Publications by authors named "Fibach E"

Myelodysplastic syndrome (MDS) is a heterogeneous group of bone marrow stem cell disorders characterized by ineffective hematopoiesis and cytopenias, most commonly anemia. Red cell transfusion therapy for anemia in MDS results in iron overload, correlating with reduced overall survival. Whether the treatment of iron overload benefits MDS patients remains controversial.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated the use of deferiprone (DFP), an oral iron-chelating drug, in patients with lower risk myelodysplastic syndromes (MDSs) who are dependent on red blood cell (RBC) transfusions and suffer from iron overload.
  • Eighteen adult patients treated with DFP for 4 months showed significant reductions in oxidative stress markers, including a 58.6% decrease in reactive oxygen species (ROS), and improvements in other parameters like reduced glutathione and lipid peroxidation.
  • No cases of agranulocytosis occurred during the study, indicating that DFP was tolerable, and the findings suggest potential benefits of D
View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the impact of free haem and iron on vascular health in patients with blood disorders like β-thalassaemia, hereditary spherocytosis, and sickle cell disease, showing that these substances can cause inflammation and vascular issues.
  • Researchers found elevated levels of haem and iron in patients, leading to increased oxidative stress and markers of inflammation compared to healthy individuals.
  • The findings suggest that targeting free haem and iron with specific therapies could help manage vascular dysfunction and inflammation in these blood disorders.
View Article and Find Full Text PDF

Membrane shedding in the form of extracellular vesicles plays a key role in normal physiology and pathology. Partial disturbance of the membrane-cytoskeleton linkage and increased in the intracellular Ca content are considered to be mechanisms underlying the process, but it is questionable whether they constitute the primary initiating steps. Homeostasis of the redox system, which depends on the equilibrium between oxidants and antioxidants, is crucial for many cellular processes.

View Article and Find Full Text PDF

We hypothesize that polycations, such as nuclear histones, released by neutrophils COVID-19 aggravate COVID-19 by multiple mechanisms: (A) Neutralization of the electrostatic repulsion between the virus particles and the cell membrane, thereby enhancing receptor-mediated entry. (B) Binding to the virus particles, thereby inducing opsonin-mediated endocytosis. (C) Adding to the cytotoxicity, in conjunction with oxidants, cytokines and other pro-inflammatory substances secreted by cells of the innate immunity system.

View Article and Find Full Text PDF

Thalassemia (thal) is a hereditary chronic hemolytic anemia due to a partial or complete deficiency in the production of globin chains, in most cases, α or β, which compose, together with the iron-containing porphyrins (hemes), the hemoglobin molecules in red blood cells (RBC). The major clinical symptom of β-thal is severe chronic anemia-a decrease in RBC number and their hemoglobin content. In spite of the improvement in therapy, thal still severely affects the quality of life of the patients and their families and imposes a substantial financial burden on the community.

View Article and Find Full Text PDF

Cell oxidative status, which represents the balance between oxidants and antioxidants, is involved in normal functions. Under pathological conditions, there is a shift toward the oxidants, leading to oxidative stress, which is cytotoxic, causing oxidation of cellular components that result in cell death and organ damage. Thalassemia is a hereditary hemolytic anemia caused by mutations in globin genes that cause reduced or complete absence of specific globin chains (commonly, α or β).

View Article and Find Full Text PDF

Background: Fetal-maternal hemorrhage (FMH) occurs when fetal red blood cells (RBC) pass into the maternal circulation as a result of obstetric- or trauma-related complications to pregnancy. Their detection in the maternal blood is commonly used as a diagnostic test. There is, however, a serious and general limitation to this test that is sometimes ignored.

View Article and Find Full Text PDF

The major hemoglobin (Hb) during fetal life is fetal Hb (Hb F). It is mostly replaced by adult Hbs before birth and during the first year of life. In adults, where Hb F comprises <2.

View Article and Find Full Text PDF

Thalassemia (thal) is an autosomal recessive, hereditary, chronic hemolytic anemia due to a partial or complete deficiency in the synthesis of α-globin chains (α-thal) or β-globin chains (β-thal) that compose the major adult hemoglobin (α β It is caused by one or more mutations in the corresponding genes. The unpaired globin chains are unstable; they precipitate intracellularly, resulting in hemolysis, premature destruction of red blood cell [RBC] precursors in the bone marrow, and a short life-span of mature RBCs in the circulation. The state of anemia is treated by frequent RBC transfusions.

View Article and Find Full Text PDF

While most common symptom of impairment of iron homeostasis is iron deficiency anemia, some hematological disorders are associated with iron overload (IO). These disorders are related mainly to chronic severe hemolytic anemia, where red blood cells (RBC) or their precursors are destroyed prematurely (hemolyzed), leading to anemia that cannot be compensated by increased production of new RBC. In such cases, IO is mainly due to repeated RBC transfusions and/or increased uptake of iron in the gastrointestinal tract.

View Article and Find Full Text PDF

β-Thalassemia (β-thal) is a very common disease in the Palestinian population of the Gaza Strip. We studied their mutation frequency and clinical features. Thirteen different mutations were identified.

View Article and Find Full Text PDF

Iron is an essential element for key cellular metabolic processes. However, transfusional iron overload (IOL) may result in significant cellular toxicity. IOL occurs in transfusion dependent hematologic malignancies (HM), may lead to pathological clinical outcomes, and IOL reduction may improve outcomes.

View Article and Find Full Text PDF

The formation of new blood vessels plays a crucial for the development and progression of pathophysiological changes associated with a variety of disorders, including carcinogenesis. Angiogenesis inhibitors (anti-angiogenics) are an important part of treatment for some types of cancer. Some natural products isolated from marine invertebrates have revealed antiangiogenic activities, which are diverse in structure and mechanisms of action.

View Article and Find Full Text PDF

The JAK2V617F mutation that results in a hyper-activation of the JAK2 kinase in the erythropoietin pathway is a molecular marker for myeloproliferative neoplasms. Using allele-specific Real-Time PCR, we detected the mutation in the blood of 17.3% (17/98) of normal donors; the mutant allele burden was, however, very low (<0.

View Article and Find Full Text PDF

Anemia is a major cause of morbidity and mortality worldwide resulting from a wide variety of pathological conditions. In severe cases it is treated by blood transfusions or injection of erythroid stimulating agents, e.g.

View Article and Find Full Text PDF

Exposure to ionizing radiation causes cellular damage, which can lead to premature cell death or accumulation of somatic mutations, resulting in malignancy. The damage is mediated in part by free radicals, particularly reactive oxygen species. Fermented papaya preparation (FPP), a product of yeast fermentation of Carica papaya Linn, has been shown to act as an antioxidant.

View Article and Find Full Text PDF

Oxidative stress has been recognized to play important roles in various diseases, including of the oral cavity. However, nutritional supplementation of antioxidants to ameliorate the consequences of oxidative stress is debatable. One caveat is that oxidative status is often measured under non-physiological conditions.

View Article and Find Full Text PDF

The complement (C') system and redox status play important roles in the physiological functioning of the body, such as the defense system, but they are also involved in various pathological conditions, including hemolytic anemia. Herein, we review the interaction between the C' and the redox systems in C'-mediated hemolytic anemias, paroxysmal nocturnal hemoglobinuria (PNH) and autoimmune hemolytic anemia, including acute hemolytic transfusion reaction. Blood cells in these diseases have been shown to have increased oxidative status, which was further elevated by interaction with activated C'.

View Article and Find Full Text PDF

Several investigations have demonstrated a mild clinical status in patients with β-globin disorders and congenital high persistence of foetal haemoglobin. This can be mimicked by a pharmacological increase of foetal γ-globin genes expression and foetal haemoglobin production. Our goal was to apply a multistep assay including few screening methods (benzidine staining, RT-PCR and HPLC analyses) and erythroid cellular model systems (the K562 cell line and erythroid precursors collected from peripheral blood) to select erythroid differentiation agents with foetal haemoglobin inducing potential.

View Article and Find Full Text PDF

Patients with β-thalassemia major and mainly intermedia have an increased risk for developing venous and arterial thrombosis which may be related to circulating pathological red blood cells (RBC) and continuous platelet activation. In the present study we used a modified thalassemic mice model in conjunction with a "real-time" carotid thrombus formation procedure to investigate thrombotic complications of thalassemia. Heterozygous Th3/+ mice, which lack one copy of their β-major and β-minor globin genes, exhibit anomalies in RBC size and shape, chronic anemia and splenomegaly which recapitulate the phenotype of human β-thalassemia intermedia.

View Article and Find Full Text PDF

This review presents the indications and contraindications (pros and cons) for the potential use of erythropoietin (Epo) as a treatment in β-thalassemia and sickle cell anemia (SCA). Its high cost and route of administration (by injection) are obvious obstacles, especially in underdeveloped countries, where thalassemia is prevalent. We believe that from the data summarized in this review, the time has come to define, by studying in vitro and in vivo models, as well as by controlled clinical trials, the rationale for treating patients with various forms of thalassemia and SCA with Epo alone or in combination with other medications.

View Article and Find Full Text PDF

The pathophysiology of oxidative hemolytic anemia is closely associated with hemoglobin (Hb) stability; however, the mechanism of how Hb maintains its stability under oxidative stress conditions of red blood cells (RBCs) carrying high levels of oxygen is unknown. Here, we investigated the potential role of peroxiredoxin II (Prx II) in preventing Hb aggregation induced by reactive oxygen species (ROS) using Prx II knockout mice and RBCs of patients with hemolytic anemia. Upon oxidative stress, ROS and Heinz body formation were significantly increased in Prx II knockout RBCs compared to wild-type (WT), which ultimately accelerated the accumulation of hemosiderin and heme-oxygenase 1 in the Prx II knock-out livers.

View Article and Find Full Text PDF