Publications by authors named "Fiandra L"

Extracellular vesicles (EV) have emerged as promising cell-free therapeutics in regenerative medicine. However, translating primary cell line-derived EV to clinical applications requires large-scale manufacturing and several challenges, such as replicative senescence, donor heterogeneity, and genetic instability. To address these limitations, we used a reprogramming approach to generate human induced pluripotent stem cells (hiPSC) from the young source of cord blood mesenchymal stem/stromal cells (CBMSC).

View Article and Find Full Text PDF

Background: The interaction between cancer cells and cancer-associated fibroblasts (CAFs) is a key determinant of the rapid progression, high invasiveness, and chemoresistance of aggressive desmoplastic cancers such as pancreatic ductal adenocarcinoma (PDAC). Tumor cells are known to reprogram fibroblasts into CAFs by secreting transforming growth factor beta (TGF-β), amongst other cytokines. In turn, CAFs produce soluble factors that promote tumor-cell invasiveness and chemoresistance, including TGF-β itself, which has a major role in myofibroblastic CAFs.

View Article and Find Full Text PDF

Catheter-associated urinary tract infections (CAUTI) are among the most common bacterial infections associated with prolonged hospitalization and increased healthcare expenditures. Despite recent advances in the prevention and treatment of these infections, there are still many challenges remaining, among them the creation of a durable catheter coating, which prevents bacterial biofilm formation. The current work reports on a method of protecting medical tubing endowed with antibiofilm properties.

View Article and Find Full Text PDF

The interaction between tumor cells and activated fibroblasts determines malignant features of desmoplastic carcinomas such as rapid growth, progression towards a metastatic phenotype, and resistance to chemotherapy. On one hand, tumor cells can activate normal fibroblasts and even reprogram them into CAFs through complex mechanisms that also involve soluble factors. Among them, transforming growth factor beta (TGF-β) and Platelet-Derived Growth Factor (PDGF) have an established role in the acquisition of pro-tumorigenic phenotypes by fibroblasts.

View Article and Find Full Text PDF

Background: Surfactant protein-D (SP-D) is a lung-resident protein that has emerged as a potential biomarker for COVID-19. Previous investigations on acute respiratory distress syndrome patients demonstrated a significant increment of SP-D serum levels in pathological conditions. Since SP-D is not physiologically permeable to alveoli-capillary membrane and poorly expressed by other tissues, this enhancement is likely due to an impairment of the pulmonary barrier caused by prolonged inflammation.

View Article and Find Full Text PDF

In this study, superparamagnetic iron oxide nanoparticles (SPIONs) were engineered with an organic coating composed of low molecular weight heparin (LMWH) and bovine serum albumin (BSA), providing heparin-based nanoparticle systems (LMWH@SPIONs). The purpose was to merge the properties of the heparin skeleton and an inorganic core to build up a targeted theranostic nanosystem, which was eventually enhanced by loading a chemotherapeutic agent. Iron oxide cores were prepared via the co-precipitation of iron salts in an alkaline environment and oleic acid (OA) capping.

View Article and Find Full Text PDF

Multidrug antimicrobial resistance is a constantly growing health care issue associated with increased mortality and morbidity, and huge financial burden. Bacteria frequently form biofilm communities responsible for numerous persistent infections resistant to conventional antibiotics. Herein, novel nanoparticles (NPs) loaded with the natural bactericide farnesol (FSL NPs) are generated using high-intensity ultrasound.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is one of the most sophisticated diagnostic tools that is routinely used in clinical practice. Contrast agents (CAs) are commonly exploited to afford much clearer images of detectable organs and to reduce the risk of misdiagnosis caused by limited MRI sensitivity. Currently, only a few gadolinium-based CAs are approved for clinical use.

View Article and Find Full Text PDF

Polypyrrole (PPy) nanoparticles (NPs) are used for the coating of materials, such as textiles, with biomedical applications, including wound care and tissue engineering, but they are also promising antibacterial agents. In this work, PPy NPs were used for the spray-coating of textiles with antimicrobial properties. The functional properties of the materials were verified, and their safety was evaluated.

View Article and Find Full Text PDF

Diesel exhaust particles (DEPs) and non-exhaust particles from abrasion are two main representative sources of air pollution to which humans are exposed daily, together with emerging nanomaterials, whose emission is increasing considerably. In the present work, we aimed to investigate whether DEPs, metal oxide nanoparticles (MeO-NPs), and their mixtures could affect alveolar cells. The research was focused on whether NPs induced different types of death in cells, and on their effects on cell motility and migration.

View Article and Find Full Text PDF

The role of cosmetic products is rapidly evolving in our society, with their use increasingly seen as an essential contribution to personal wellness. This suggests the necessity of a detailed elucidation of the use of nanoparticles (NPs) in cosmetics. The aim of the present work is to offer a critical and comprehensive review discussing the impact of exploiting nanomaterials in advanced cosmetic formulations, emphasizing the beneficial effects of their extensive use in next-generation products despite a persisting prejudice around the application of nanotechnology in cosmetics.

View Article and Find Full Text PDF

In the biomedical field, gold nanoparticles (GNPs) have attracted the attention of the scientific community thanks to their high potential in both diagnostic and therapeutic applications. The extensive use of GNPs led researchers to investigate their toxicity, identifying stability, size, shape, and surface charge as key properties determining their impact on biological systems, with possible strategies defined to reduce it according to a Safe-by-Design (SbD) approach. The purpose of the present work was to analyze the toxicity of GNPs of various sizes and with different coating polymers on the developing vertebrate model, zebrafish.

View Article and Find Full Text PDF

In the context of nosocomial infections, there is an urgent need to develop efficient nanomaterials (NMs) with antibacterial properties for the prevention of infection diseases. Metal oxide nanoparticles (MeO-NPs) are promising candidates for the development of new antibacterial textiles. However, the direct exposure to MeO-NPs and MeO-coated NMs through skin contact could constitute a severe hazard for human health.

View Article and Find Full Text PDF

The identification of a highly sensitive method to check the delivery of administered nanodrugs into the tumor cells is a crucial step of preclinical studies aimed to develop new nanoformulated cures, since it allows the real therapeutic potential of these devices to be forecast. In the present work, the ability of an H-ferritin (HFn) nanocage, already investigated as a powerful tool for cancer therapy thanks to its ability to actively interact with the transferrin receptor 1, to act as an efficient probe for the monitoring of nanodrug delivery to tumors is demonstrated. The final formulation is a bioluminescent nanoparticle, where the luciferin probe is conjugated on nanoparticle surface by means of a disulfide containing linker (Luc-linker@HFn) which is subjected to glutathione-induced cyclization in tumor cell cytoplasm.

View Article and Find Full Text PDF

Iron nanoparticles (NPs) have been proposed as a tool in very different fields such as environmental remediation and biomedical applications, including food fortification against iron deficiency, even if there is still concern about their safety. Here, we propose embryos as a suitable model to investigate the toxicity and the bio-interactions at the intestinal barrier of FeO and zerovalent iron (ZVI) NPs compared to Fe(II) and (III) salts in the 5 to 100 mg Fe/L concentration range using the Frog Embryo Teratogenesis Assay in (FETAX). Our results demonstrated that, at concentrations at which iron salts induce adverse effects, both iron NPs do not cause acute toxicity or teratogenicity even if they accumulate massively in the embryo gut.

View Article and Find Full Text PDF

Airborne ultrafine particles (UFP) mainly derive from combustion sources (e.g., diesel exhaust particles-DEP), abrasion sources (non-exhaust particles) or from the unintentional release of engineered nanoparticles (e.

View Article and Find Full Text PDF

The enormous technological relevance of titanium dioxide (TiO) nanoparticles (NPs) and the consequent concerns regarding potentially hazardous effects that exposure during production, use, and disposal can generate, encourage material scientists to develop and validate intrinsically safe design solution (safe-by-design). Under this perspective, the encapsulation in a silica dioxide (SiO) matrix could be an effective strategy to improve TiO NPs safety, preserving photocatalytic and antibacterial properties. In this work, A549 cells were used to investigate the toxic effects of silica-encapsulated TiO having different ratios of TiO and SiO (1:1, 1:3, and 3:1).

View Article and Find Full Text PDF

The integration of multiple imaging and therapeutic agents into a customizable nanoplatform for accurate identification and rapid prevention of cancer is attracting great attention. Among the available theranostic nanosystems, magnetic gold nanoparticles are particularly promising as they exhibit unique physicochemical properties that can support multiple functions, including cancer diagnosis by magnetic resonance imaging, X-ray computed tomography, Raman and photoacoustic imaging, drug delivery, and plasmonic photothermal and photodynamic therapies. This review gives an overview of recent advances in the fabrication of multifunctional gold nanohybrids with magnetic and optical properties and their successful demonstration in multimodal imaging and therapy of cancer.

View Article and Find Full Text PDF

The use of therapeutic monoclonal antibodies (mAbs) has revolutionized cancer treatment. The conjugation of mAbs to nanoparticles has been broadly exploited to improve the targeting efficiency of drug nanocarriers taking advantage of high binding efficacy and target selectivity of antibodies for specific cell receptors. However, the therapeutic implications of nanoconjugation have been poorly considered.

View Article and Find Full Text PDF

Chemotherapeutic treatment of breast cancer is based on maximum tolerated dose (MTD) approach. However, advanced stage tumors are not effectively eradicated by MTD owing to suboptimal drug targeting, onset of therapeutic resistance and neoangiogenesis. In contrast, "metronomic" chemotherapy is based on frequent drug administrations at lower doses, resulting in neovascularization inhibition and induction of tumor dormancy.

View Article and Find Full Text PDF

Active targeting of nanoparticles to tumours can be achieved by conjugation with specific antibodies. Specific active targeting of the HER2 receptor is demonstrated in vitro and in vivo with a subcutaneous MCF-7 breast cancer mouse model with trastuzumab-functionalized gold nanoparticles. The number of attached antibodies per nanoparticle was precisely controlled in a way that each nanoparticle was conjugated with either exactly one or exactly two antibodies.

View Article and Find Full Text PDF

The central nervous system is a very challenging HIV-1 sanctuary. But, despite complete suppression of plasmatic viral replication with current antiretroviral therapy, signs of HIV-1 replication can still be found in the cerebrospinal fluid in some patients. The main limitation to achieving HIV-1 eradication from the brain is related to the suboptimal concentrations of antiretrovirals within this site, due to their low permeation across the blood-brain barrier.

View Article and Find Full Text PDF

Brain microvascular endothelial cells, supported by pericytes and astrocytes endfeet, are responsible for the low permeation of large hydrosoluble drugs through the blood-brain barrier (BBB), causing difficulties for effective pharmacological therapies. In recent years, different strategies for promoting brain targeting have aimed to improve drug delivery and activity at this site, including innovative nanosystems for drug delivery across the BBB. In this context, an in vitro approach based on a simplified cellular model of the BBB provides a useful tool to investigate the effect of nanoformulations on the trans-BBB permeation of molecules.

View Article and Find Full Text PDF

In this study, insulin-containing nanoparticles were loaded into pellet cores and orally administered to diabetic rats. Polyethylene imine-based nanoparticles, either placebo or loaded with insulin, were incorporated by extrusion and spheronization technology into cores that were subsequently coated with three overlapping layers and a gastroresistant film. The starting and coated systems were evaluated in vitro for their physico-technololgical characteristics, as well as disintegration and release performance.

View Article and Find Full Text PDF

Nowadays cancer represents a prominent challenge in clinics. Main achievements in cancer management would be the development of highly accurate and specific diagnostic tools for early detection of cancer onset, and the generation of smart drug delivery systems for targeted chemotherapy release in cancer cells. In this context, protein-based nanocages hold a tremendous potential as devices for theranostics purposes.

View Article and Find Full Text PDF