Publications by authors named "Fevzi Cakmak Cebeci"

Bubble dynamics inside a liquid medium and its interactions with hydrophobic and hydrophilic surfaces are crucial for many industrial processes. Electrospinning of polymers has emerged as a promising fabrication technique capable of producing a wide variety of hydrophobic and hydrophilic polymer nanofibers and membranes at a low cost. Thus, knowledge about the bubble interactions on electrospun hydrophobic and hydrophilic nanofibers can be utilized for capturing; separating; and transporting macro-, micro-, and nanobubbles.

View Article and Find Full Text PDF

The importance of surface topology for the generation of cavitating flows in micro scale has been emphasized during the last decade. In this regard, the utilization of surface roughness elements is not only beneficial in promoting mass transportation mechanisms, but also in improving the surface characteristics by offering new interacting surface areas. Therefore, it is possible to increase the performance of microfluidic systems involving multiphase flows via modifying the surface.

View Article and Find Full Text PDF

Platinum (Pt)-decorated graphene-based carbon composite electrodes with controlled dimensionality were successfully fabricated via core-shell electrospinning/electrospraying techniques. In this process, multilayer graphene sheets were converted into the three different forms, fiber, sphere, and foam, by tailoring the polymer concentration, molecular weight of polymer, and applied voltage. As polymer concentration increased, continuous fibers were produced, whereas decreasing polymer concentration caused the formation of graphene-based foam.

View Article and Find Full Text PDF