Publications by authors named "Feuerbach F"

RNA stability, important for eukaryotic gene expression, is thought to depend on deadenylation rates, with shortened poly(A) tails triggering decapping and 5' to 3' degradation. In contrast to this view, recent large-scale studies indicate that the most unstable mRNAs have, on average, long poly(A) tails. To clarify the role of deadenylation in mRNA decay, we first modeled mRNA poly(A) tail kinetics and mRNA stability in yeast.

View Article and Find Full Text PDF

Eukaryotic protein synthesis generally initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but the quantitative importance of this context in different species is unclear. We tested this concept in two pathogenic Cryptococcus yeast species by genome-wide mapping of translation and of mRNA 5' and 3' ends. We observed thousands of AUG-initiated upstream open reading frames (uORFs) that are a major contributor to translation repression.

View Article and Find Full Text PDF

The fidelity of transcription initiation is essential for accurate gene expression, but the determinants of start site selection are not fully understood. Rap1 and other general regulatory factors (GRFs) control the expression of many genes in yeast. We show that depletion of these factors induces widespread ectopic transcription initiation within promoters.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA quality-control pathway targeting transcripts such as messenger RNAs harboring premature stop-codons or short upstream open reading frame (uORFs). Our transcription start sites (TSSs) analysis of Saccharomyces cerevisiae cells deficient for RNA degradation pathways revealed that about half of the pervasive transcripts are degraded by NMD, which provides a fail-safe mechanism to remove spurious transcripts that escaped degradation in the nucleus. Moreover, we found that the low specificity of RNA polymerase II TSSs selection generates, for 47% of the expressed genes, NMD-sensitive transcript isoforms carrying uORFs or starting downstream of the ATG START codon.

View Article and Find Full Text PDF

Nonsense-mediated mRNA decay (NMD) destabilizes eukaryotic transcripts with long 3' UTRs. To investigate whether other transcript features affect NMD, we generated yeast strains expressing chromosomal-derived mRNAs with 979 different promoter and open reading frame (ORF) regions and with the same long, destabilizing 3' UTR. We developed a barcode-based DNA microarray strategy to compare the levels of each reporter mRNA in strains with or without active NMD.

View Article and Find Full Text PDF

RNA Pol II transcription termination can occur by at least two alternative pathways. Cleavage and polyadenylation by the CPF/CF complex precedes mRNA transcription termination, while the Nrd1 complex is involved in transcription termination of non-coding RNAs such as sno/snRNAs or cryptic unstable transcripts. Here we show that transcription of RPL9B, one of the two genes coding for the ribosomal protein Rpl9p, terminates by either of these two pathways.

View Article and Find Full Text PDF

Background: An approach to endotoxin (lipopolysaccharide [LPS]) blockade makes use of the ability of lipoproteins, via surface phospholipids, to bind and neutralize LPS. The aim of the present study was to determine whether the intravenous administration of a protein-free, phospholipid-rich emulsion is an effective method for neutralizing the effects of LPS in healthy persons.

Methods: This was a double-blind, placebo-controlled study in 20 volunteers.

View Article and Find Full Text PDF

Transgene-induced post-transcriptional gene silencing (PTGS) results from specific degradation of RNAs that are homologous with the transgene transcribed sequence. This phenomenon, also known as cosuppression in plants and quelling in fungi, resembles RNA interference (RNAi) in animals. Indeed, cosuppression/quelling/RNAi require related PAZ/PIWI proteins (AGO1/QDE-2/RDE-1), indicating that these mechanisms are related.

View Article and Find Full Text PDF

Recent experiments have shown that gene repression can be correlated with relocation of genes to heterochromatin-rich silent domains. Here, we investigate whether nuclear architecture and spatial positioning can contribute directly to the transcriptional activity of a genetic locus in Saccharomyces cerevisiae. By disassembling telomeric silent domains without altering the chromatin-mediated silencing machinery, we show that the transcriptional activity of silencer--reporter constructs depends on intranuclear position.

View Article and Find Full Text PDF

The open reading frame (ORF) of the tobacco retrotransposon Tnt1-94 was over-expressed in Escherichia coli to assay its protease and reverse transcriptase (RT) enzymatic activities. In E. coli, Tnt1-94 polyprotein is cleaved off by the element-encoded protease to release a Gag protein with an apparent molecular mass of 37 kDa that forms high-density aggregates.

View Article and Find Full Text PDF

Tissue culture has been shown to induce the transposition of plant transposable elements; their insertion at novel sites results in somaclonal variation. Introduction of the tobacco retrotransposon Tnt1 into Arabidopsis thaliana by co-cultivation of root explants with Agrobacterium tumefaciens induces its transposition at a high frequency, but no transposed copies are found in plants transformed by the in planta procedure. Transposition occurs in the transformed root cells or in the calli derived from them, allowing the regeneration of transformed plants with up to 26 transposed copies of Tnt1.

View Article and Find Full Text PDF

Posttranscriptional gene silencing (PTGS) in plants resuits from the degradation of mRNAs and shows phenomenological similarities with quelling in fungi and RNAi in animals. Here, we report the isolation of sgs2 and sgs3 Arabidopsis mutants impaired in PTGS. We establish a mechanistic link between PTGS, quelling, and RNAi since the Arabidopsis SGS2 protein is similar to an RNA-dependent RNA polymerase like N.

View Article and Find Full Text PDF

The tobacco retrotransposon Tnt1 can transpose through an RNA intermediate in the heterologous host Arabidopsis thaliana. We report here the identification and characterization of extrachromosomal linear and circular DNA forms of Tnt1 in this heterologous host. Our results demonstrate that Tnt1 linear intermediates possess two extra base pairs at each end compared with Tnt1's integrated forms.

View Article and Find Full Text PDF

There have been major advances in our understanding of the molecular biology and pathophysiology of human disease over the past decade. This expanding knowledge of the basic mechanisms of human disease coupled with the development of efficient methods of transferring genes to mammalian cells has stimulated considerable interest in treating diseases with gene therapy. Clinical trials have demonstrated that human gene transfer is possible, that several strategies exist for successfully introducing exogenous genes to human cells, that a variety of transgenes can evoke biologic responses important to human diseases, and that gene transfer can provide valuable insights into the pathophysiology of human disorders.

View Article and Find Full Text PDF

The tobacco (Nicotiana tabacum) retrotransposon Tnt1 was introduced into Arabidopsis thaliana. In this heterologous host plant species, Tnt1 undergoes an RNA-mediated transposition and creates a 5 bp duplication at the insertion sites. This is the first report of transposition of a retrotransposon after introduction into a heterologous host species.

View Article and Find Full Text PDF