Identifying the scaling rules describing ecological patterns across time and space is a central challenge in ecology. Taylor's law of fluctuation scaling, which states that the variance of a population's size or density is proportional to a positive power of the mean size or density, has been widely observed in population dynamics and characterizes variability in multiple scientific domains. However, it is unclear if this phenomenon accurately describes ecological patterns across many orders of magnitude in time, and therefore links otherwise disparate observations.
View Article and Find Full Text PDFDeclining oxygen concentrations in the deep waters of lakes worldwide pose a pressing environmental and societal challenge. Existing theory suggests that low deep-water dissolved oxygen (DO) concentrations could trigger a positive feedback through which anoxia (i.e.
View Article and Find Full Text PDFSpecies may cope with warming through both rapid evolutionary and plastic responses. While thermal performance curves (TPCs), reflecting thermal plasticity, are considered powerful tools to understand the impact of warming on ectotherms, their rapid evolution has been rarely studied for multiple traits. We capitalized on a 2-year experimental evolution trial in outdoor mesocosms that were kept at ambient temperatures or heated 4°C above ambient, by testing in a follow-up common-garden experiment, for rapid evolution of the TPCs for multiple key traits of the water flea .
View Article and Find Full Text PDFThe ubiquitous presence of microplastics (MP) in aquatic ecosystems can affect organisms and communities in multiple ways. While MP research on aquatic organisms has primarily focused on marine ecosystems and laboratory experiments, the community-level effects of MP in freshwaters, especially in lakes, are poorly understood. To examine the impact of MP on freshwater lake ecosystems, we conducted the first in situ community-level mesocosm experiment testing the effects of MP on a model food web with zooplankton as main herbivores, odonate larvae as predators, and chironomid larvae as detritivores for seven weeks.
View Article and Find Full Text PDFUntangling causal links and feedbacks among biodiversity, ecosystem functioning, and environmental factors is challenging due to their complex and context-dependent interactions (e.g., a nutrient-dependent relationship between diversity and biomass).
View Article and Find Full Text PDFLand use and climate change are anticipated to affect phytoplankton of lakes worldwide. The effects will depend on the magnitude of projected land use and climate changes and lake sensitivity to these factors. We used random forests fit with long-term (1971-2016) phytoplankton and cyanobacteria abundance time series, climate observations (1971-2016), and upstream catchment land use (global Clumondo models for the year 2000) data from 14 European and 15 North American lakes basins.
View Article and Find Full Text PDFLocal biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions.
View Article and Find Full Text PDFClimate and land-use change drive a suite of stressors that shape ecosystems and interact to yield complex ecological responses (that is, additive, antagonistic and synergistic effects). We know little about the spatial scales relevant for the outcomes of such interactions and little about effect sizes. These knowledge gaps need to be filled to underpin future land management decisions or climate mitigation interventions for protecting and restoring freshwater ecosystems.
View Article and Find Full Text PDFThe concentration of dissolved organic matter (DOM) in freshwaters is increasing in large areas of the world. In addition to carbon, DOM contains nitrogen and phosphorus and there is growing concern that these organic nutrients may be bioavailable and contribute to eutrophication. However, relatively few studies have assessed the potential for dissolved organic nitrogen (DON) or dissolved organic phosphorus (DOP) compounds to be bioavailable to natural river phytoplankton communities at different locations or times.
View Article and Find Full Text PDFCyanobacterial blooms are an increasing threat to water quality and global water security caused by the nutrient enrichment of freshwaters. There is also a broad consensus that blooms are increasing with global warming, but the impacts of other concomitant environmental changes, such as an increase in extreme rainfall events, may affect this response. One of the potential effects of high rainfall events on phytoplankton communities is greater loss of biomass through hydraulic flushing.
View Article and Find Full Text PDFAn increase of dissolved organic carbon (DOC) in inland waters has been reported across the northern temperate region but the effects of this on whole lake ecosystems, often combined with other anthropogenic stressors like nutrient inputs and warming, are poorly known. The effects of these changes on different component of the ecosystem were assessed in an experiment using twenty-four large (3000L) outdoor mesocosms simulating shallow lakes. Two different temperature regimes (ambient and ambient +4 °C) combined with three levels of organic matter (OM, added as filtered peaty water), simulating the DOC increase that is predicted to take place over the next 4 to 21 years were used.
View Article and Find Full Text PDFThe global proliferation of harmful algal blooms poses an increasing threat to water resources, recreation and ecosystems. Predicting the occurrence of these blooms is therefore needed to assist water managers in making management decisions to mitigate their impact. Evaluation of the potential for forecasting of algal blooms using the phytoplankton community model PROTECH was undertaken in pseudo-real-time.
View Article and Find Full Text PDFExtreme weather can have a substantial influence on lakes and is expected to become more frequent with climate change. We explored the influence of one particular extreme event, Storm Ophelia, on the physical and chemical environment of England's largest lake, Windermere. We found that the substantial influence of Ophelia on meteorological conditions at Windermere, in particular wind speed, resulted in a 25-fold increase (relative to the study-period average) in the wind energy flux at the lake-air interface.
View Article and Find Full Text PDFPhenological changes have been observed globally for marine, freshwater and terrestrial species, and are an important element of the global biological 'fingerprint' of climate change. Differences in rates of change could desynchronize seasonal species interactions within a food web, threatening ecosystem functioning. Quantification of this risk is hampered by the rarity of long-term data for multiple interacting species from the same ecosystem and by the diversity of possible phenological metrics, which vary in their ecological relevance to food web interactions.
View Article and Find Full Text PDFWe used marine phytoplankton from mesocosms seeded with different zooplankton densities to study the impact of mesozooplankton on phytoplankton nutrient limitation. After 7 d of grazing (copepod mesocosms) or 9 d (appendicularian mesocosms) phytoplankton nutrient limitation was studied by enrichment bioassays. After removal of mesozooplankton, bioassay bottles received either no nutrients, phosphorus or nitrogen alone, or a combination of nitrogen and phosphorus and were incubated for 2 d.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
January 2004
A literature survey of zooplankton stable isotope studies revealed inconsistencies between authors concerning (a) fixation and (b) allowance for gut clearance of zooplankton prior to delta13C and delta15N determinations. To address whether commonly used preservation techniques induce changes in stable isotope values, fresh lake zooplankton (control) were compared with preserved (ethanol, methanol, formaldehyde, gluteraldehyde, frozen and shock frozen) material. Differences of up to 1.
View Article and Find Full Text PDF