Publications by authors named "Fethullah Gunes"

Herein, we report the fabrication of zinc oxide nanowire (ZnO NW) coated carbon fiber (CF) ultra-microelectrodes (UME). ZnO NWs were grown on commercial multifilament CFs through hydrothermal process in a teflon-lined autoclave at 90 °C for 4 h. X-ray diffraction (XRD), Raman and scanning electron microscopy characterizations showed that crystalline and well oriented NW structures were successfully obtained.

View Article and Find Full Text PDF

Nanobiosensors are convenient, practical, and sensitive analyzers that detect chemical and biological agents and convert the results into meaningful data between a biologically active molecule and a recognition element immobilized on the surface of the signal transducer by a physicochemical detector. Due to their fast, accurate and reliable operating characteristics, nanobiosensors are widely used in clinical and nonclinical applications, bedside testing, medical textile industry, environmental monitoring, food safety, etc. They play an important role in such critical applications.

View Article and Find Full Text PDF

Chemical doping of graphene is a key process for the modulation of its electronic properties and the design and fabrication of graphene-based nanoelectronic devices. Here, we study the adsorption of diluted concentrations of nitric acid (HNO3) onto monolayer graphene/4H-SiC (0001) to induce a variation of the graphene work function (WF). Raman spectroscopy indicates an increase in the defect density subsequent to the doping.

View Article and Find Full Text PDF

We report that vertically aligned ZnO nanowire arrays (ZnO NWAs) were fabricated on 3D graphene foam (GF) and used to selectively detect uric acid (UA), dopamine (DA), and ascorbic acid (AA) by a differential pulse voltammetry method. The optimized ZnO NWA/GF electrode provided a high surface area and high selectivity with a detection limit of 1 nM for UA and DA. The high selectivity in the oxidation potential was explained by the gap difference between the lowest unoccupied and highest occupied molecular orbitals of a biomolecule for a set of given electrodes.

View Article and Find Full Text PDF

Grain boundaries in graphene are formed by the joining of islands during the initial growth stage, and these boundaries govern transport properties and related device performance. Although information on the atomic rearrangement at graphene grain boundaries can be obtained using transmission electron microscopy and scanning tunnelling microscopy, large-scale information regarding the distribution of graphene grain boundaries is not easily accessible. Here we use optical microscopy to observe the grain boundaries of large-area graphene (grown on copper foil) directly, without transfer of the graphene.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how the presence of both edge and basal planes in graphite complicates lithium ion diffusion.
  • Two types of graphene were created: one with a basal plane on copper and another with edge planes on nickel, showing differing electrochemical performances based on layer thickness.
  • Findings indicate that defects in graphene help lithium ions move perpendicular to the basal plane, but hinder parallel movement due to crowding from adsorbed lithium ions, with a critical thickness of about 6 layers optimal for performance.
View Article and Find Full Text PDF

Persistent photoconductance, a prolonged light-induced conducting behavior that lasts several hundred seconds, has been observed in semiconductors. Here we report persistent negative photoconductance and consecutive prominent persistent positive photoconductance in graphene. Unusually large yields of negative PC (34%) and positive PC (1652%) and remarkably long negative transient response time (several hours) were observed.

View Article and Find Full Text PDF

We report that highly crystalline graphene can be obtained from well-controlled surface morphology of the copper substrate. Flat copper surface was prepared by using a chemical mechanical polishing method. At early growth stage, the density of graphene nucleation seeds from polished Cu film was much lower and the domain sizes of graphene flakes were larger than those from unpolished Cu film.

View Article and Find Full Text PDF

Graphene/carbon nanotube (CNT) hybrid structures are fabricated for use as optical arrays. Vertically aligned CNTs are directly synthesized on a graphene/quartz substrate using plasma-enhanced chemical vapor deposition (PECVD). Graphene preserves the transparency and resistance during CNT growth.

View Article and Find Full Text PDF

Despite the availability of large-area graphene synthesized by chemical vapor deposition (CVD), the control of a uniform monolayer graphene remained challenging. Here, we report a method of acquiring monolayer graphene by laser irradiation. The accumulation of heat on graphene by absorbing light, followed by oxidative burning of upper graphene layers, which strongly relies on the wavelength of light and optical parameters of the substrate, was in situ measured by the G-band shift in Raman spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • A new layer-by-layer (LbL) doping method was developed for thin graphene films, utilizing chemical vapor deposition to synthesize large area monolayer graphene on Cu foil.
  • The LbL process involved transferring layers onto a substrate and repeating a salt-solution casting, resulting in an 80% decrease in sheet resistance while maintaining high transmittance.
  • The final LbL-doped four-layer graphene demonstrated a sheet resistance of 54 Omega/sq at 85% transmittance, enhancing environmental stability and meeting industrial application standards.
View Article and Find Full Text PDF