Purpose: Polysorbates are commonly added to protein formulations and serve an important function as stabilizers. This paper reviews recent literature detailing some of the issues seen with the use of polysorbate 80 and polysorbate 20 in protein formulations. Based on this knowledge, a development strategy is proposed that leads to a control strategy for polysorbates in protein formulations.
View Article and Find Full Text PDFWe have extended our studies of Trp/Trp to other Aryl/Aryl through-space interactions that stabilize hairpins and other small polypeptide folds. Herein we detail the NMR and CD spectroscopic features of these types of interactions. NMR data remains the best diagnostic for characterizing the common T-shape orientation.
View Article and Find Full Text PDFHigh-concentration antibody solutions (>100 mg/mL) present significant challenges for formulation and process development, including formulation attributes such as increased solution viscosity, and the propensity for self-association. An additional challenge comes from the adaptation of analytical methods designed for low-concentration formulations to the high-concentration regime. The oligomeric state is a good example: it is a quality attribute monitored during pharmaceutical development and is one that can be affected by dilution; a typical first step in the analysis of high-concentration solutions.
View Article and Find Full Text PDFPolysorbate 20 (PS20) is a nonionic surfactant frequently used to stabilize protein biopharmaceuticals. During the development of mAb formulations containing PS20, small clouds of particles were observed in solutions stored in vials. The degree of particle formation was dependent on PS20 concentration.
View Article and Find Full Text PDFWe report, for the first time, the identification of fatty acid particles in formulations containing the surfactant polysorbate 20. These fatty acid particles were observed in multiple mAb formulations during their expected shelf life under recommended storage conditions. The fatty acid particles were granular or sand-like in morphology and were several microns in size.
View Article and Find Full Text PDFProtein solubility was measured using the crystalline precipitate of a recombinant therapeutic antibody, in monovalent salt solutions containing KF, KCl, and KSCN (up to ∼ 0.7 M) at different pH conditions. For all three anions, the antibody solubility demonstrated complex behavior, both monotonic and nonmonotonic, with dependence on pH and salt concentration.
View Article and Find Full Text PDFSpecific-ion effects are ubiquitous in nature; however, their underlying mechanisms remain elusive. Although Hofmeister-ion effects on proteins are observed at higher (>0.3 M) salt concentrations, in dilute (<0.
View Article and Find Full Text PDFThe concentration-dependence of the diffusion and sedimentation coefficients (k(D) and k(s), respectively) of a protein can be used to determine the second virial coefficient (B₂), a parameter valuable in predicting protein-protein interactions. Accurate measurement of B₂ under physiologically and pharmaceutically relevant conditions, however, requires independent measurement of k(D) and k(s) via orthogonal techniques. We demonstrate this by utilizing sedimentation velocity (SV) and dynamic light scattering (DLS) to analyze solutions of hen-egg white lysozyme (HEWL) and a monoclonal antibody (mAb1) in different salt solutions.
View Article and Find Full Text PDFIons can significantly modulate the solution interactions of proteins. We aim to demonstrate that the salt-dependent reversible heptamerization of a fusion protein called peptibody A or PbA is governed by anion-specific interactions with key arginyl and lysyl residues on its peptide arms. Peptibody A, an E.
View Article and Find Full Text PDFPurpose: The impact of ions on protein aggregation remains poorly understood. We explored the role of ionic strength and ion identity on the temperature- and agitation-induced aggregation of antibodies.
Methods: Stability studies were used to determine the influence of monovalent Hofmeister anions and cations on aggregation propensity of three IgG(2) mAbs.
Purpose: Understand the underlying mechanism governing the salt-induced precipitation of a basic (pI = 8.8) protein, Peptibody A (PbA), in acidic solutions.
Methods: The rate, extent, and reversibility of PbA precipitation was monitored over 4-weeks as a function of pH (3.
The temperature dependence of helical propensities for the peptides Ac-ZGG-(KAAAA)(3)X-NH(2) (Z = Y or G, X = A, K, and D-Arg) were studied both experimentally and by MD simulations. Good agreement is observed in both the absolute helical propensities as well as relative helical content along the sequence; the global minimum on the calculated free energy landscape corresponds to a single alpha-helical conformation running from K4 to A18 with some terminal fraying, particularly at the C-terminus. Energy component analysis shows that the single helix state has favorable intramolecular electrostatic energy due to hydrogen bonds, and that less-favorable two-helix globular states have favorable solvation energy.
View Article and Find Full Text PDFMonoclonal antibodies (mAbs) often require the development of high-concentration formulations. In such cases, and when it is desirable to formulate a mAb around pH 5.0, we explored a novel approach of controlling the formulation pH by harnessing the ability of mAbs to "self-buffer.
View Article and Find Full Text PDFMinimized beta hairpins have provided additional data on the geometric preferences of Trp interactions in TW-loop-WT motifs. This motif imparts significant fold stability to peptides as short as 8 residues. High-resolution NMR structures of a 16- (KKWTWNPATGKWTWQE, DeltaG(U)(298) >or= +7 kJ/mol) and 12-residue (KTWNPATGKWTE, DeltaG(U)(298) = +5.
View Article and Find Full Text PDFA detailed analysis of peptide backbone amide (H(N)) and H alpha chemical shifts reveals a consistent pattern for beta hairpins and three-stranded beta sheets. The H alpha's at non-hydrogen-bonded strand positions are inwardly directed and shifted downfield approximately 1 ppm due largely to an anisotropy contribution from the cross-strand amide function. The secondary structure associated H alpha shift deviations for the H-bonded strand positions are also positive but much smaller (0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2005
Hairpins play a central role in numerous protein folding and misfolding scenarios. Prior studies of hairpin folding, many conducted with analogs of a sequence from the B1 domain of protein G, suggest that faster folding can be achieved only by optimizing the turn propensity of the reversing loop. Based on studies using dynamic NMR, the native GB1 sequence is a slow folding hairpin (k(F)(278)=1.
View Article and Find Full Text PDFBoth NMR and IR studies of carbonyl (13C') isotopomers of designed helices can provide residue-level details regarding the fractional occurrence and melting behavior of helical phi/psi angles along the sequence of helical peptides, details that cannot be obtained from CD or 1H-NMR studies. We have studied a classic series of helical models, Ac-YGG-(KAXAA)3K-NH2 (X=A,V), in both aqueous and helix-favoring media containing fluoroalcohol cosolvents, including a solvent system allowing the observation of cold denaturation. These studies confirmed the strong N-capping associated with this sequence and revealed more extensive C-terminal fraying than that calculated using current helicity prediction algorithms.
View Article and Find Full Text PDFCold denaturation is a general phenomenon in globular proteins, and the associated cold-denatured states of proteins have important fundamental and practical significance. Here, we have characterized the cold-denatured state of a beta-hairpin forming peptide, MrH3a, in 8% hexafluoro-2-propanol (HFIP) and the dynamics of its refolding following a laser-induced T-jump. Beta-hairpins constitute an important class of protein structural elements, yet their folding mechanisms are not fully understood.
View Article and Find Full Text PDFBeta-hairpins constitute an important class of connecting protein secondary structures. Several groups have postulated that such structures form early in the folding process and serve to nucleate the formation of extended beta-sheet structures. Despite the importance of beta-hairpins in protein folding, little is known about the mechanism of formation of these structures.
View Article and Find Full Text PDFA mutational study of the peptide corresponding to the second hairpin of the protein G B1 domain (GB1p) provided a series of mutants with significantly increased fold stability. Mutations focused on improvement of the direction-reversing loop and the addition of favorable Coulombic interactions at the sequence termini. The loop optimization was based on a database search for residues that occur with the greatest probability in similar hairpin loops in proteins.
View Article and Find Full Text PDFA novel computational procedure for modeling possible locally driven folding pathways by stepwise elongations of the peptide chain was successfully applied to TC5b, a 20-residue miniprotein. Systematic exploration of the possible locally driven pathways showed that the Trp-cage structure of TC5b could be obtained by stepwise elongation starting from the noncentral local nucleation centers preexisting in the unfolded state of TC5b. The probable locally driven folding pathway starts with folding of alpha-helical fragment 4-9, followed by formation of the proper three-dimensional structure of fragment 4-12, and then 4-18.
View Article and Find Full Text PDFTruncation and mutation of a poorly folded 39-residue peptide has produced 20-residue constructs that are >95% folded in water at physiological pH. These constructs optimize a novel fold, designated as the 'Trp-cage' motif, and are significantly more stable than any other miniprotein reported to date. Folding is cooperative and hydrophobically driven by the encapsulation of a Trp side chain in a sheath of Pro rings.
View Article and Find Full Text PDFExendin-4, a 39 amino acid peptide originally isolated from the oral secretions of the lizard Heloderma suspectum, has been shown to share certain activities with glucagon-like-peptide-1 (GLP-1), a 30 amino acid peptide. We have determined the structuring preferences of exendin-4 and GLP-1 by NMR in both the solution and dodecylphosphocholine (DPC) micelle-associated states. Based on both chemical shift deviations and the pattern of intermediate range NOEs, both peptides display significant helicity from residue 7 to residue 28 with greater fraying at the N-terminus.
View Article and Find Full Text PDF