A nano-flow high-resolution screening platform, featuring a parallel chip-based microfluidic bioassay and mass spectrometry coupled to nano-liquid chromatography, was applied to screen animal venoms for nicotinic acetylcholine receptor like (nAChR) affinity by using the acetylcholine binding protein, a mimic of the nAChR. The potential of this microfluidic platform is demonstrated by profiling the Conus textile venom proteome, consisting of over 1,000 peptides. Within one analysis (<90 min, 500 ng venom injected), ligands are detected and identified.
View Article and Find Full Text PDFAnimal venoms are important sources for finding new pharmaceutical lead molecules. We used an analytical platform for initial rapid screening and identification of bioactive compounds from these venoms followed by fast and straightforward LC-MS only guided purification to obtain bioactives for further chemical and biological studies. The analytical platform consists of a nano-LC separation coupled post-column to high-resolution mass spectrometry and parallel on-line bioaffinity profiling for the acetylcholine binding protein (AChBP) in a chip based fluorescent enhancement based bioassay.
View Article and Find Full Text PDFThis research presents an analytical technology for highly efficient, high-resolution, and high-yield fractionation of compounds after gas chromatography (GC) separations. The technology is straightforward, does not require sophisticated cold traps or adsorbent traps, and allows collecting large numbers of fractions during a GC run. The technology is based on direct infusion of a carrier solvent at the end of the GC column, where infusion takes place in the GC oven.
View Article and Find Full Text PDFIn this study, an end-point-based fluorescence assay for soluble epoxide hydrolase (sEH) was transformed into an on-line continuous-flow format. The on-line biochemical detection system (BCD) was coupled on-line to liquid chromatography (LC) to allow mixture analysis. The on-line BCD was based on a flow system wherein sEH activity was detected by competition of analytes with the substrate hydrolysis.
View Article and Find Full Text PDFVenomous snakes have evolved their efficient venomous arsenals mainly to immobilize prey. The highly variable toxic peptides in these venoms target a myriad of neurotoxic and haemotoxic receptors and enzymes and comprise highly interesting candidates for drug discovery. Discovery of bioactive compounds from snake venoms, however, is a challenge to achieve.
View Article and Find Full Text PDFThis study describes the evaluation, validation, and use of contactless postcolumn fractionation of bioactive mixtures with acetylcholine binding protein (AChBP) affinity analysis with help of a spotter technology. The high-resolution fractionation tailors the fractionation frequency to the chromatographic peaks. Postcolumn reagents for AChBP bioaffinity profiling are mixed prior to droplet ejection into 1536-well plates.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
June 2011
A magnetic beads based affinity-selection methodology towards the screening of acetylcholine binding protein (AChBP) binders in mixtures and pure compound libraries was developed. The methodology works as follows: after in solution incubation of His-tagged AChBP with potential ligands, and subsequent addition of cobalt (II)-coated paramagnetic beads, the formed bead-AChBP-ligand complexes are fetched out of solution by injection and trapping in LC tubing with an external adjustable magnet. Non binders are then washed to the waste followed by elution of ligands to a SPE cartridge by flushing with denaturing solution.
View Article and Find Full Text PDFThe estrogenic mycotoxin zearalenone (ZEN) can undergo hepatic reductive metabolism to form the estrogenic α and β isomers of zearalenol. ZEN also undergoes cytochrome P450 monooxygenase (P450)-mediated oxidative metabolism to form monohydroxylated products, but until now nothing is known about the estrogenic potency of these metabolites. This study aimed at investigating the metabolism of ZEN by different P450 isoforms and to determine the estrogen receptor α (ERα) affinities of the in vitro P450-generated ZEN metabolites in an online high-resolution screening (HRS) setup.
View Article and Find Full Text PDFOne way to profile complex mixtures for receptor affinity is to couple liquid chromatography (LC) on-line to biochemical detection (BCD). A drawback of this hyphenated screening approach is the relatively high consumption of sample, receptor protein and (fluorescently labeled) tracer ligand. Here, we worked toward minimization of sample and reagent consumption, by coupling nano-LC on-line to a light-emitting diode (LED) based capillary confocal fluorescence detection system capable of on-line BCD with low-flow rates.
View Article and Find Full Text PDFThe aim of the here presented study was to combine high performance liquid chromatography with plate reader technology in order to overcome certain drawbacks of integrated online systems as well as offline plate reader approaches. The described method combines an "at-line" enzyme assay for the simultaneous bioactivity determination with parallel QTOF MS data acquisition for analyte identification. All biochemical reagents are added in an online mode directly to the column effluent (postcolumn addition/mixing), and the complete screening assay mixture is subsequently microfractionated into a 1536 well plate.
View Article and Find Full Text PDFA novel method for the identification of glutathione/electrophile adducts that are inhibiting glutathione-S-transferase (GST) activity was developed and applied for the analysis of the mycotoxin patulin. The method is based on high-performance liquid chromatography (HPLC) coupled to a continuous-flow enzyme reactor serving as biochemical detector (BCD) in parallel to electrospray mass spectrometric detection (ESI-MS). This HPLC-BCD technique combines a separation step and the detection of the inhibition and is therefore ideally suited for the analysis of the activity of single patulin/glutathione adducts within a complex mixture of adducts.
View Article and Find Full Text PDFA gradient HPLC approach in combination with a countergradient system for online biochemical detection (BCD) to screen for inhibitors of serine proteases is described. For gradient separations, this novel countergradient system was developed to produce a biocompatible constant solvent composition in the BCD. The countergradient system is based on retaining complete gradients in an additional preparative HPLC column, followed by subsequent and reversible elution to the separation column effluent.
View Article and Find Full Text PDF