Tissue repair requires temporal control of progenitor cell proliferation and differentiation to replenish damaged cells. In response to acute insult, group 3 innate lymphoid cells (ILC3s) regulate intestinal stem cell maintenance and subsequent tissue repair. ILC3-derived IL-22 is important for stem cell protection, but the mechanisms of ILC3-driven tissue regeneration remain incompletely defined.
View Article and Find Full Text PDFUnder homeostatic conditions, dendritic cells (DCs) continuously patrol the intestinal lamina propria. Upon antigen encounter, DCs initiate C-C motif chemokine receptor 7 (CCR7) expression and migrate into lymph nodes to direct T cell activation and differentiation. The mechanistic underpinnings of DC migration from the tissues to lymph nodes have been largely elucidated, contributing greatly to our understanding of DC functionality and intestinal immunity.
View Article and Find Full Text PDFIL-7 is essential for the development and homeostasis of T and B lymphocytes and is critical for neonatal lymph node organogenesis because mice lack normal lymph nodes. Whether IL-7 is a continued requirement for normal lymph node structure and function is unknown. To address this, we ablated IL-7 function in normal adult hosts.
View Article and Find Full Text PDFA substantial number of human and mouse group 3 innate lymphoid cells (ILC3s) reside in secondary lymphoid organs, yet the phenotype and function of these ILC3s is incompletely understood. Here, we employed an unbiased cross-tissue transcriptomic approach to compare human ILC3s from non-inflamed lymph nodes and spleen to their phenotypic counterparts in inflamed tonsils and from circulation. These analyses revealed that, in the absence of inflammation, lymphoid organ-residing ILC3s lack transcription of cytokines associated with classical ILC3 functions.
View Article and Find Full Text PDFIL-23p19 deficient mice have revealed a critical role of IL-23 in the development of experimental autoimmune diseases, such as collagen-induced arthritis (CIA). Neutralizing IL-23 after onset of CIA in rats has been shown to reduce paw volume, but the effect on synovial inflammation and the immunological autoimmune response is not clear. In this study, we examined the role of IL-23 at different stages of CIA and during T cell memory mediated flare-up arthritis with focus on changes in B cell activity and Th1/Th17 modulation.
View Article and Find Full Text PDFHuman RORC(+) lymphoid tissue inducer cells are part of a rapidly expanding family of innate lymphoid cells (ILC) that participate in innate and adaptive immune responses as well as in lymphoid tissue (re) modeling. The assessment of a potential role for innate lymphocyte-derived cytokines in human homeostasis and disease is hampered by a poor characterization of RORC(+) innate cell subsets and a lack of knowledge on the distribution of these cells in adults. Here we show that functionally distinct subsets of human RORC(+) innate lymphoid cells are enriched for secretion of IL-17a or IL-22.
View Article and Find Full Text PDFObjectives: T helper 17 (Th17) cells from patients with early rheumatoid arthritis (RA) induce a proinflammatory feedback loop upon RA synovial fibroblast (RASF) interaction, including autocrine interleukin (IL)-17A production. A major challenge in medicine is how to control the pathogenic Th17 cell activity in human inflammatory autoimmune diseases. The objective of this study was to examine whether tumour necrosis factor (TNF) blockade and/or 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) controls Th17-mediated synovial inflammation.
View Article and Find Full Text PDFInnate lymphoid cells expressing the nuclear hormone receptor RORC have emerged as important players in human mucosal immunity. These cells combine innate modes of activation such as Toll-like receptor signaling with secretion of adaptive effector molecules including IL-2, BAFF and the Th17 cytokines IL-17 and IL-22. This endows these cells with the ability to rapidly respond to changes in cytokine milieu as well as changes in microbial composition and to affect both intestinal homeostasis and activation of adaptive immune cells.
View Article and Find Full Text PDFObjective: To examine the role of interleukin-23 (IL-23) in subgroup polarization of IL-17A-positive and/or interferon-gamma (IFNgamma)-positive T cells in autoimmune disease-prone DBA/1 mice with and without collagen-induced arthritis.
Methods: A magnetic-activated cell sorting system was used to isolate CD4+ T cells from the spleen of naive and type II collagen (CII)-immunized DBA/1 mice. These CD4+ T cells were stimulated in vitro under Th0, Th1, or different Th17 culture conditions.
Introduction: Interleukin (IL)-23 is essential for the development of various experimental autoimmune models. However, the role of IL-23 in non-autoimmune experimental arthritis remains unclear. Here, we examined the role of IL-23 in the non-autoimmune antigen-induced arthritis (AIA) model.
View Article and Find Full Text PDFRheumatoid arthritis (RA) was originally thought to be a T-helper (Th)1-, not a Th2-, associated disorder; however, it currently is unclear whether RA is a Th1- and/or Th17-mediated disease, and what the contributions of these T-cell subsets are in the pathogenesis of RA. Results from studies using different arthritis models have demonstrated that IL-17-producing T-cells are the dominant cell type in the development of arthritis. In addition, a critical role of the IL-23/IL-17 axis in the progression to chronic destructive arthritis has been demonstrated.
View Article and Find Full Text PDFTopical application of imiquimod (IMQ), a TLR7/8 ligand and potent immune activator, can induce and exacerbate psoriasis, a chronic inflammatory skin disorder. Recently, a crucial role was proposed for the IL-23/IL-17 axis in psoriasis. We hypothesized that IMQ-induced dermatitis in mice can serve as a model for the analysis of pathogenic mechanisms in psoriasis-like dermatitis and assessed its IL-23/IL-17 axis dependency.
View Article and Find Full Text PDFObjective: Rheumatoid arthritis is associated with the infiltration of T helper cells into the joints. It is unclear whether interferon-gamma (IFNgamma)-producing Th1 cells or the novel T helper subset, interleukin-17 (IL-17)-producing Th17 cells, are the pathogenic mediators of joint inflammation in chronic nonautoimmune arthritis. Therefore, this study was aimed at examining whether the Th2-specific transcription factor GATA-3 can regulate arthritis, in an experimental murine model, by modulating Th1 and/or Th17 cell polarization.
View Article and Find Full Text PDFInvertebrates rely completely for their protection against pathogens on the innate immune system. This non-self-recognition is activated by microbial cell wall components with unique conserved molecular patterns. Pathogen-associated molecular patterns (PAMPs) are recognised by pattern recognition receptors (PRRs).
View Article and Find Full Text PDF