Animal toxins are highly reticulated and structured polypeptides that adopt a limited number of folds. In scorpion species, the most represented fold is the alpha/beta scaffold in which an helical structure is connected to an antiparallel beta-sheet by two disulfide bridges. The intimate relationship existing between peptide reticulation and folding remains poorly understood.
View Article and Find Full Text PDFThe membrane disruption mechanism of pandinin 1 (pin1), an antimicrobial peptide isolated from the venom of the African scorpion, was studied using 31P, 13C, 1H solid-state and multidimensional solution-state NMR spectroscopy. A high-resolution NMR solution structure of pin1 showed that the two distinct alpha-helical regions move around the central hinge region, which contains Pro19. 31P NMR spectra of lipid membrane in the presence of pin1, at various temperatures, showed that pin1 induces various lipid phase behaviors depending on the acyl chain length and charge of phospholipids.
View Article and Find Full Text PDFIn a previous study we have shown that llama VHH antibody fragments are able to bind their antigen after a heat shock of 90 degrees C, in contrast to the murine monoclonal antibodies. However, the molecular mechanism by which antibody:antigen interaction occurs under these extreme conditions remains unclear. To examine in more detail the structural and thermodynamic aspects of the binding mechanism, an extensive CD, ITC, and NMR study was initiated.
View Article and Find Full Text PDFDelta-paluIT1 and delta-paluIT2 are toxins purified from the venom of the spider Paracoelotes luctuosus. Similar in sequence to mu-agatoxins from Agelenopsis aperta, their pharmacological target is the voltage-gated insect sodium channel, of which they alter the inactivation properties in a way similar to alpha-scorpion toxins, but they bind on site 4 in a way similar to beta-scorpion toxins. We determined the solution structure of the two toxins by use of two-dimensional nuclear magnetic resonance (NMR) techniques followed by distance geometry and molecular dynamics.
View Article and Find Full Text PDFThe Om-toxins are short peptides (23-27 amino acids) purified from the venom of the scorpion Opisthacanthus madagascariensis. Their pharmacological targets are thought to be potassium channels. Like Csalpha/beta (cystine-stabilized alpha/beta) toxins, the Om-toxins alter the electrophysiological properties of these channels; however, they do not share any sequence similarity with other scorpion toxins.
View Article and Find Full Text PDFMaurotoxin (MTX) and HsTx1 are two scorpion toxins belonging to the alpha-KTx6 structural family. These 34-residue toxins, cross-linked by four disulfide bridges, share 59% sequence identity and fold along the classical alpha/beta scaffold. Despite these structural similarities, they fully differ in their pharmacological profiles.
View Article and Find Full Text PDFOligomerization reaction was carried out at room temperature using sulfated titania as catalyst. Total isobutene conversion was obtained with high stability for a long period of time. In case of deactivation, total reactivation of the catalyst was reached.
View Article and Find Full Text PDFAnimal toxins block voltage-dependent potassium channels (Kv) either by occluding the conduction pore (pore blockers) or by modifying the channel gating properties (gating modifiers). Gating modifiers of Kv channels bind to four equivalent extracellular sites near the S3 and S4 segments, close to the voltage sensor. Phrixotoxins are gating modifiers that bind preferentially to the closed state of the channel and fold into the Inhibitory Cystine Knot structural motif.
View Article and Find Full Text PDFBiochemistry
November 2003
PMP-D2 and HI, two peptides from Locusta migratoria, were shown to belong to the family of tight-binding protease inhibitors. However, they interact weakly with bovine trypsin (K(i) around 100 nM) despite a trypsin-specific Arg at the primary specificity site P1. Here we demonstrate that they are potent inhibitors of midgut trypsins isolated from the same insect and of a fungal trypsin from Fusarium oxysporum (K(i)
The X-ray structure of a ternary complex between human chorionic gonadotropin hormone (hCG) and two Fvs recognizing its alpha and beta subunits has been recently determined. The Fvs recognize the elongated hCG molecule by its two ends, one being the Leu-12-Cys-29 loop of the alpha subunit. We have designed and synthesized a 17-amino-acid peptide (named PepH14) derived from the sequence of this antigenic loop with the purpose of mimicking its three-dimensional structure and its affinity for antibodies.
View Article and Find Full Text PDFMaurotoxin (MTX) is a 34-mer scorpion toxin cross-linked by four disulfide bridges that acts on both Ca(2+)-activated (SK) and voltage-gated (Kv) K(+) channels. A 38-mer chimera of MTX, Tsk-MTX, has been synthesized by the solid-phase method. It encompasses residues from 1 to 6 of Tsk at N-terminal, and residues from 3 to 34 of MTX at C-terminal.
View Article and Find Full Text PDFNoxiustoxin (NxTX) and iberiotoxin (IbTX) exhibit extraordinary differences in their ability to inhibit current through the large-conductance calcium-activated potassium (maxi-K) and voltage-gated potassium (Kv1.3) channels. The three-dimensional structures of NxTX and IbTX display differences in their alpha/beta turn and in the length of the alpha-carbon backbone.
View Article and Find Full Text PDFHpTX2 is a toxin from the venom of Heteropoda venatoria spider that has been demonstrated to bind on Kv4.2 potassium channel. We have determined the solution structure of recombinant HpTX2 by use of conventional two-dimensional NMR techniques followed by distance-geometry and molecular dynamics.
View Article and Find Full Text PDFMaurotoxin (MTX) is a 34-residue toxin that has been isolated from the venom of the chactidae scorpion Scorpio maurus palmatus. The toxin displays an exceptionally wide range of pharmacological activity since it binds onto small conductance Ca(2+)-activated K(+) channels and also blocks Kv channels (Shaker, Kv1.2 and Kv1.
View Article and Find Full Text PDFTityus kappa (Ts kappa), a novel toxin from the venom of the scorpion Tityus serrulatus, is a 35-residue polypeptide cross-linked by three disulphide bridges and acts on small-conductance calcium-activated potassium channels (SK channels). Ts K was chemically synthesized using the solid-phase method and characterized. The synthetic product, sTs kappa, was indistinguishable from the natural toxin when tested in vitro in competition assay with radiolabelled apamin for binding to rat brain synaptosomes (IC50 = 3 nM).
View Article and Find Full Text PDF