Publications by authors named "Ferrante T"

Despite remarkable advances in Organ-on-a-chip (Organ Chip) microfluidic culture technology, recreating tissue-relevant physiological conditions, such as the region-specific oxygen concentrations, remains a formidable technical challenge, and analysis of tissue functions is commonly carried out using one analytical technique at a time. Here, we describe two-channel Organ Chip microfluidic devices fabricated from polydimethylsiloxane and gas impermeable polycarbonate materials that are integrated with multiple sensors, mounted on a printed circuit board and operated using a commercially available Organ Chip culture instrument. The novelty of this system is that it enables the recreation of physiologically relevant tissue-tissue interfaces and oxygen tension as well as non-invasive continuous measurement of transepithelial electrical resistance, oxygen concentration and pH, combined with simultaneous analysis of cellular metabolic activity (ATP/ADP ratio), cell morphology, and tissue phenotype.

View Article and Find Full Text PDF

Dye-encoded bead-based assays are widely used for diagnostics. Multiple bead populations are required for multiplexing and can be produced using different dye colors, labeling levels, or combinations of dye ratios. Ready-to-use multiplex bead populations restrict users to specific targets, are costly, or require specialized instrumentation.

View Article and Find Full Text PDF

Multivalent presentation of ligands often enhances receptor activation and downstream signalling. DNA origami offers a precise nanoscale spacing of ligands, a potentially useful feature for therapeutic nanoparticles. Here we use a square-block DNA origami platform to explore the importance of the spacing of CpG oligonucleotides.

View Article and Find Full Text PDF

Organoids serve as a novel tool for disease modeling in three-dimensional multicellular contexts. Static organoids, however, lack the requisite biophysical microenvironment such as fluid flow, limiting their ability to faithfully recapitulate disease pathology. Here, we unite organoids with organ-on-a-chip technology to unravel disease pathology and develop therapies for autosomal recessive polycystic kidney disease.

View Article and Find Full Text PDF

Introduction: Sustained, developmentally adverse experiences in childhood put survivors at risk for posttraumatic stress disorder and impairments in biological, affective, cognitive, and intra/interpersonal domains. Complex trauma symptoms are often treated in isolation without addressing their common root cause. The trauma-focused phased Complex Trauma Care Pathway (CTCP) was developed to address this care gap.

View Article and Find Full Text PDF

Lymphoid follicles (LFs) are responsible for generation of adaptive immune responses in secondary lymphoid organs and form ectopically during chronic inflammation. A human model of ectopic LF formation will provide a tool to understand LF development and an alternative to non-human primates for preclinical evaluation of vaccines. Here, it is shown that primary human blood B- and T-lymphocytes autonomously assemble into ectopic LFs when cultured in a 3D extracellular matrix gel within one channel of a two-channel organ-on-a-chip microfluidic device.

View Article and Find Full Text PDF

In low-resource settings, resilience to infectious disease outbreaks can be hindered by limited access to diagnostic tests. Here we report the results of double-blinded studies of the performance of paper-based diagnostic tests for the Zika and chikungunya viruses in a field setting in Latin America. The tests involved a cell-free expression system relying on isothermal amplification and toehold-switch reactions, a purpose-built portable reader and onboard software for computer vision-enabled image analysis.

View Article and Find Full Text PDF
Article Synopsis
  • - β-Lactam antibiotics, like mecillinam, disrupt bacterial cell walls by inhibiting penicillin-binding proteins (PBPs) involved in peptidoglycan assembly, leading to a futile cycle of synthesis and degradation.
  • - The study focuses on Escherichia coli and reveals that the lethality from inhibiting PBP2 is caused by toxic metabolic changes, including increased energy demands and accelerated protein synthesis.
  • - The research highlights that the inhibition of PBPs disrupts the balance between anabolic and catabolic processes, affecting ATP production and cellular redox status, which is crucial for the antibiotics' lethal effects.
View Article and Find Full Text PDF

The COVID-19 pandemic highlights the need for diagnostics that can be rapidly adapted and deployed in a variety of settings. Several SARS-CoV-2 variants have shown worrisome effects on vaccine and treatment efficacy, but no current point-of-care (POC) testing modality allows their specific identification. We have developed miSHERLOCK, a low-cost, CRISPR-based POC diagnostic platform that takes unprocessed patient saliva; extracts, purifies, and concentrates viral RNA; performs amplification and detection reactions; and provides fluorescent visual output with only three user actions and 1 hour from sample input to answer out.

View Article and Find Full Text PDF

Objectives: This study presents the application of post-occupancy evaluations (POEs) methodologies to facilities for palliative-hospice care, in order to directly assess the physical-spatial qualities better suited for the specific psychological needs of "fragile" users and to ensure better architectural quality in new projects and in renovation measures.

Background: In international literature, there are few studies concerning the application of POEs to hospice, assessing the impact of individual environmental factors on users' psychoemotional reactions. The set of elements that patients and their families perceive as important, defining the architectural quality of a hospice, has not been sufficiently investigated yet.

View Article and Find Full Text PDF

The ability to accurately and precisely measure the thickness of biomaterial constructs is critical for characterizing both specific dimensional features and related mechanical properties. However, in the absence of a standardized approach for thickness measurements, a variety of imaging modalities have been employed, which have been associated with varying limits of accuracy, particularly for ultrathin hydrated structures. Electron microscopy (EM), a commonly used modality, yields thickness values for extensively processed and nonhydrated constructs, potentially resulting in overestimated mechanical properties, including elastic modulus and ultimate tensile strength.

View Article and Find Full Text PDF

We present barcoded oligonucleotides ligated on RNA amplified for multiplexed and parallel insitu analyses (BOLORAMIS), a reverse transcription-free method for spatially-resolved, targeted, in situ RNA identification of single or multiple targets. BOLORAMIS was demonstrated on a range of cell types and human cerebral organoids. Singleplex experiments to detect coding and non-coding RNAs in human iPSCs showed a stem-cell signature pattern.

View Article and Find Full Text PDF

Quorum sensing is a process of cell-to-cell communication that bacteria use to orchestrate collective behaviors. Quorum sensing depends on the production, release, and detection of extracellular signal molecules called autoinducers (AIs) that accumulate with increasing cell density. While most AIs are species specific, the AI called AI-2 is produced and detected by diverse bacterial species, and it mediates interspecies communication.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic mutations in ACTN4, crucial for kidney podocyte structure, are linked to serious kidney diseases, but the impact of its phosphorylation on podocyte function remains unclear.
  • Researchers discovered that phosphorylation at serine 159 affects ACTN4's binding and bundling ability with F-actin, increasing podocyte detachment under stress and leading to kidney damage in mouse models.
  • High glucose levels and TGF- stimulate this phosphorylation, suggesting that both genetic mutations and environmental factors could contribute to podocyte injury and kidney disease.
View Article and Find Full Text PDF

Organ chips can recapitulate organ-level (patho)physiology, yet pharmacokinetic and pharmacodynamic analyses require multi-organ systems linked by vascular perfusion. Here, we describe an 'interrogator' that employs liquid-handling robotics, custom software and an integrated mobile microscope for the automated culture, perfusion, medium addition, fluidic linking, sample collection and in situ microscopy imaging of up to ten organ chips inside a standard tissue-culture incubator. The robotic interrogator maintained the viability and organ-specific functions of eight vascularized, two-channel organ chips (intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain) for 3 weeks in culture when intermittently fluidically coupled via a common blood substitute through their reservoirs of medium and endothelium-lined vascular channels.

View Article and Find Full Text PDF

Exposure of lung tissues to cigarette smoke is a major cause of human disease and death worldwide. Unfortunately, adequate model systems that can reliably recapitulate disease biogenesis in vitro, including exposure of the human lung airway to fresh whole cigarette smoke (WCS) under physiological breathing airflow, are lacking. This protocol extension builds upon, and can be used with, our earlier protocol for microfabrication of human organs-on-chips.

View Article and Find Full Text PDF

Cholesterol biosynthesis is a multistep process in mammals that includes the aerobic removal of three methyl groups from the intermediate lanosterol, one from position 14 and two from position 4. During the demethylations at position 4, a 3-ketosteroid reductase catalyses the conversion of both 4-methylzymosterone and zymosterone to 4-methylzymosterol and zymosterol, respectively, restoring the alcoholic function of lanosterol, which is also maintained in cholesterol. Unlike other eukaryotes, mammals also use the same enzyme as an estrone reductase that can transform estrone (E1) into estradiol (E2).

View Article and Find Full Text PDF

Background & Aims: The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology.

View Article and Find Full Text PDF

Kidney organoids derived from human pluripotent stem cells have glomerular- and tubular-like compartments that are largely avascular and immature in static culture. Here we report an in vitro method for culturing kidney organoids under flow on millifluidic chips, which expands their endogenous pool of endothelial progenitor cells and generates vascular networks with perfusable lumens surrounded by mural cells. We found that vascularized kidney organoids cultured under flow had more mature podocyte and tubular compartments with enhanced cellular polarity and adult gene expression compared with that in static controls.

View Article and Find Full Text PDF

Synthetic biology offers opportunities for experiential educational activities at the intersection of the life sciences, engineering, and design. However, implementation of hands-on biology activities in classrooms is challenging because of the need for specialized equipment and expertise to grow living cells. We present BioBits™ Bright, a shelf-stable, just-add-water synthetic biology education kit with easy visual outputs enabled by expression of fluorescent proteins in freeze-dried, cell-free reactions.

View Article and Find Full Text PDF

Hands-on demonstrations greatly enhance the teaching of science, technology, engineering, and mathematics (STEM) concepts and foster engagement and exploration in the sciences. While numerous chemistry and physics classroom demonstrations exist, few biology demonstrations are practical and accessible due to the challenges and concerns of growing living cells in classrooms. We introduce BioBits™ Explorer, a synthetic biology educational kit based on shelf-stable, freeze-dried, cell-free (FD-CF) reactions, which are activated by simply adding water.

View Article and Find Full Text PDF

Studies on human intestinal injury induced by acute exposure to γ-radiation commonly rely on use of animal models because culture systems do not faithfully mimic human intestinal physiology. Here we used a human Gut-on-a-Chip (Gut Chip) microfluidic device lined by human intestinal epithelial cells and vascular endothelial cells to model radiation injury and assess the efficacy of radiation countermeasure drugs in vitro. Exposure of the Gut Chip to γ-radiation resulted in increased generation of reactive oxygen species, cytotoxicity, apoptosis, and DNA fragmentation, as well as villus blunting, disruption of tight junctions, and compromise of intestinal barrier integrity.

View Article and Find Full Text PDF

An model of the human kidney glomerulus - the major site of blood filtration - could facilitate drug discovery and illuminate kidney-disease mechanisms. Microfluidic organ-on-a-chip technology has been used to model the human proximal tubule, yet a kidney-glomerulus-on-a-chip has not been possible because of the lack of functional human podocytes - the cells that regulate selective permeability in the glomerulus. Here, we demonstrate an efficient (> 90%) and chemically defined method for directing the differentiation of human induced pluripotent stem (hiPS) cells into podocytes that express markers of the mature phenotype (nephrin+, WT1+, podocin+, Pax2-) and that exhibit primary and secondary foot processes.

View Article and Find Full Text PDF

Tooth formation during embryogenesis is controlled through a complex interplay between mechanical and chemical cues. We have previously shown that physical cell compaction of dental mesenchyme cells during mesenchymal condensation is responsible for triggering odontogenic differentiation during embryogenesis, and that expression of Collagen VI stabilizes this induction. In addition, we have shown that synthetic polymer scaffolds that artificially induce cell compaction can induce embryonic mandible mesenchymal cells to initiate tooth differentiation both in vitro and in vivo.

View Article and Find Full Text PDF