Background: Approximately 5% to 10% of patients with Lynch syndrome develop urothelial carcinoma. Current screening recommendations vary and are based on expert opinion. Practices need to be evaluated for clinical effectiveness.
View Article and Find Full Text PDFEmerging research has revealed regulation of colorectal cancer metabolism by bacteria. () plays a crucial role in the development of colorectal cancer, however, whether infection modifies metabolism in patients with colorectal cancer remains unknown. Here, LC-MS/MS-based lipidomics identified the upregulation of cytochrome P450 monooxygenases, primarily CYP2J2, and their mediated product 12,13-EpOME in patients with colorectal cancer tumors and mouse models, which increased the invasive and migratory ability of colorectal cancer cells and by regulating the epithelial-mesenchymal transition (EMT).
View Article and Find Full Text PDFThe pathogenesis of ulcerative colitis (UC), a major type of inflammatory bowel disease, remains unknown. No model exists that adequately recapitulates the complexity of clinical UC. Here, we take advantage of induced pluripotent stem cells (iPSCs) to develop an induced human UC-derived organoid (iHUCO) model and compared it with the induced human normal organoid model (iHNO).
View Article and Find Full Text PDFNeoadjuvant radiation is standard of care for locally advanced rectal cancer. Response to radiation is highly variable and directly linked with survival. However, there currently are no validated biomarkers or molecular targets to predict or improve radiation response, which would help develop personalized treatment and ideally targeted therapies.
View Article and Find Full Text PDFBackground: The methylator pathway of colorectal carcinogenesis, characterized by CpG island hypermethylation and BRAF mutations, accounts for ≈25% of colorectal cancers. Because these cancers tend to be right sided and because DNA methylation in the right colon increases with age, we expect an increasing proportion of right-sided cancer over time. Conversely, we expect young patients (age <50 y) to have less methylated and fewer right-sided cancers OBJECTIVE:: The purpose of this study was to analyze the distribution and genetic traits of colorectal cancer from different age groups.
View Article and Find Full Text PDFColorectal cancer (CRC) remains a leading killer in the U.S. with resistance to treatment as the largest hurdle to cure.
View Article and Find Full Text PDFBackground: Colorectal cancer (CRC) is a heterogeneous disease with distinct clinical subsets based on underlying genetic and epigenetic changes. DNA hypermethylation yields a unique CRC subset with a distinct phenotype and clinical behaviour, but this oncogenic pathway is not fully characterised. This study identifies and characterises miR-1247 as a novel tumour suppressor microRNA in methylated human colon cancers.
View Article and Find Full Text PDFIntroduction: Neoadjuvant chemoradiation (CRT) for rectal cancer induces variable responses, and better response has been associated with improved oncologic outcomes. Our group has previously shown that the administration of HMG-CoA reductase inhibitors, commonly known as statins, is associated with improved response to neoadjuvant CRT in rectal cancer patients. The purpose of this study was to study the effects of simvastatin on colorectal cancer cells and explore its potential as a radiation-sensitizer in vitro.
View Article and Find Full Text PDFThe GLI genes are transcription factors and in cancers are oncogenes, aberrantly and constitutively activated. GANT61, a specific GLI inhibitor, has induced extensive cytotoxicity in human models of colon cancer. The FOXM1 promoter was determined to be a transcriptional target of GLI1.
View Article and Find Full Text PDFAt the time of diagnosis, 60% of patients with head and neck squamous cell carcinoma (HNSCC) present tumors in an advanced stage (III-IV) of disease and 80% will relapse within the first two years post-treatment, due to their frequent radio(chemo)resistance. To identify new molecular targets and companion biomarkers, we have investigated the miRNome of 75 stage III-IV oropharynx tumors without relapse (R) or with loco-regional relapse (non-responder, NR) within two years post-treatment. Interestingly, miR-422a was significantly downregulated in NR tumors, in agreement with the increase in cell proliferation and adhesion induced by miR-422a inhibition in vitro.
View Article and Find Full Text PDFThis study aimed to examine the cellular and molecular long-term responses of glioblastomas to radiotherapy and hadrontherapy in order to better understand the biological effects of carbon beams in cancer treatment. Eleven human glioblastoma cell lines, displaying gradual radiosensitivity, were irradiated with photons or carbon ions. Independently of p53 or O(6)-methylguanine-DNA methyltransferase(1) status, all cell lines responded to irradiation by a G2/M phase arrest followed by the appearance of mitotic catastrophe, which was concluded by a ceramide-dependent-apoptotic cell death.
View Article and Find Full Text PDFDespite a standard of care combining surgery, radiotherapy (RT), and temozolomide chemotherapy, the average overall survival (OS) of glioblastoma patients is only 15 months, and even far lower when the patient cannot benefit from this combination. Therefore, there is a strong need for new treatments, such as new irradiation techniques. Against this background, carbon ion hadrontherapy, a new kind of irradiation, leads to a greater biological response of the tumor, while minimizing adverse effects on healthy tissues in comparison with RT.
View Article and Find Full Text PDFThe generation of cAMP by G protein-coupled receptors (GPCRs) and its termination are currently thought to occur exclusively at the plasma membrane of cells. Under existing models of receptor regulation, this signal is primarily restricted by desensitization of the receptors through their binding to β-arrestins. However, this paradigm is not consistent with recent observations that the parathyroid hormone receptor type 1 (PTHR) continues to stimulate cAMP production even after receptor internalization, as β-arrestins are known to rapidly bind and internalize activated PTHR.
View Article and Find Full Text PDFCell signaling mediated by the G protein-coupled parathyroid hormone receptor type 1 (PTHR) is fundamental to bone and kidney physiology. It has been unclear how the two ligand systems--PTH, endocrine and homeostatic, and PTH-related peptide (PTHrP), paracrine--can effectively operate with only one receptor and trigger different durations of the cAMP responses. Here we analyze the ligand response by measuring the kinetics of activation and deactivation for each individual reaction step along the PTHR signaling cascade.
View Article and Find Full Text PDFThe parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1-34), but not PTH-related protein, PTHrP(1-36), or M-PTH(1-14) (M = Ala/Aib(1),Aib(3),Gln(10),Har(11),Ala(12),Trp(14),Arg(19)), binds to the PTHR in a largely GTPgammaS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R(0)), distinct from the GTPgammaS-sensitive conformation (RG).
View Article and Find Full Text PDFX-ray crystallography is currently the most successful method for determining the three-dimensional structure of membrane proteins. Nevertheless, growing the crystals required for this technique presents one of the major bottlenecks in this area of structural biology. This is especially true for the alpha-helical type membrane proteins that are of particular interest due to their medical relevance.
View Article and Find Full Text PDFMorphine, a powerful analgesic, and norepinephrine, the principal neurotransmitter of sympathetic nerves, exert major inhibitory effects on both peripheral and brain neurons by activating distinct cell-surface G protein-coupled receptors-the mu-opioid receptor (MOR) and alpha2A-adrenergic receptor (alpha2A-AR), respectively. These receptors, either singly or as a heterodimer, activate common signal transduction pathways mediated through the inhibitory G proteins (G(i) and G(o)). Using fluorescence resonance energy transfer microscopy, we show that in the heterodimer, the MOR and alpha2A-AR communicate with each other through a cross-conformational switch that permits direct inhibition of one receptor by the other with subsecond kinetics.
View Article and Find Full Text PDFOne key to successful crystallization of membrane proteins is the identification of detergents that maintain the protein in a soluble, monodispersed state. Because of their hydrophobic nature, membrane proteins are particularly prone to forming insoluble aggregates over time. This nonspecific aggregation of the molecules reduces the likelihood of the regular association of the protein molecules essential for crystal lattice formation.
View Article and Find Full Text PDFThe first naturally occurring split intein was found in the dnaE gene of Synechocystis sp. PCC6803 and belongs to a subclass of inteins without a penultimate histidine residue. We describe two high-resolution crystal structures, one derived from an excised Ssp DnaE intein and the second from a splicing-deficient precursor protein.
View Article and Find Full Text PDFWe have determined the crystal structure of a 154-residue intein derived from the dnaB gene of Synechocystis sp. strain PCC6803 and refined it to a 2.0-A resolution.
View Article and Find Full Text PDFSite-directed mutagenesis was carried out to investigate the roles of a number of highly conserved residues of the chitin-binding domain (ChBD) of Bacillus circulans chitinase A1 (ChiA1) in the binding of chitin. Analysis of single alanine replacement mutants showed that mutation of an exposed tryptophan residue (Trp(687)) impaired the binding to chitin, while mutation of other highly conserved residues, most carrying aromatic or hydrophobic side chains, did not significantly affect the binding activity. Interestingly, replacement of Trp(687) with phenylalanine significantly reduced chitin-binding activity at lower salt concentrations (0-1 M NaCl) but allowed strong binding to chitin at 2 M NaCl.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
July 2002
A naturally occurring split intein from the dnaE gene of Synechocystis sp. PCC6803 (Ssp DnaE intein) has been purified and crystallized using PEG 8K as precipitant. The crystal belongs to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 58.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
July 2002
A 154-residue mini-intein from the dnaB gene of Synechocystis sp. PCC 6803 (Ssp DnaB intein) has been purified and crystallized using PEG 4000 as a precipitant. The crystal belongs to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 58.
View Article and Find Full Text PDF