Background: Maize is frequently contaminated with deoxynivalenol (DON) and fumonisins B (FB) and B (FB). In the European Union, these mycotoxins are regulated in maize and maize-derived products. To comply with these regulations, industries require a fast, economic, safe, non-destructive and environmentally friendly analysis method.
View Article and Find Full Text PDFOne of the most common concerns in the cereal industry is the presence of fungi and their associated mycotoxins. Hyperspectral Imaging (HSI) has been proposed recently as one of the most potent tools to manage fungal associated contamination. The introduction of a spatial dimension to the spectral analysis allows the selection of the specific regions of the sample for further screening.
View Article and Find Full Text PDFThe spatial recognition feature of near infrared hyperspectral imaging (HSI-NIR) makes it potentially suitable for Fusarium and deoxynivalenol (DON) management in single kernels to break with heterogeneity of contamination in wheat batches to move towards individual kernel sorting and provide more quick, environmental-friendly and non-destructive analysis than wet-chemistry techniques. The aim of this study was to standardize HSI-NIR for individual kernel analysis of Fusarium damage and DON presence, to predict the level of contamination and classify grains according to the EU maximum limit (1250 µg/kg). Visual inspection on Fusarium infection symptoms and HPLC analysis for DON determination were used as reference methods.
View Article and Find Full Text PDFThe present study aimed to evaluate the use of hyperspectral imaging (HSI)-NIR spectroscopy to assess the presence of DON and ergosterol in wheat samples through prediction and classification models. To achieve these objectives, a first set of bulk samples was scanned by HSI-NIR and divided into two subsamples, one that was analysed for ergosterol and another that was analysed for DON by HPLC. This method was repeated for a second larger set to build prediction and classification models.
View Article and Find Full Text PDFThe production of olive (Olea europaea L.) is very important economically in many areas of the world, and particularly in countries around the Mediterranean basin. Ripening-associated modifications in cell wall composition and structure of fruits play an important role in attributes like firmness or susceptibility to infestations, rots and mechanical damage, but limited information on these aspects is currently available for olive.
View Article and Find Full Text PDFOlive ( L.) growing has outstanding economic relevance in Spain, the main olive oil producer and exporter in the world. Fruit skin properties are very relevant for fruit and oil quality, water loss, and susceptibility to mechanical damage, rots, and infestations, but limited research focus has been placed on the cuticle of intact olive fruit.
View Article and Find Full Text PDFHere we authenticated single-varietal peach purees and pear juices on the basis of primary metabolite and phenolic compound analysis by Proton Nuclear Magnetic Resonance (H-NMR) and Ultra Performance Liquid Chromatography coupled to Photodiode Array and Tandem Mass Spectrometry (UPLC-PDA-MS/MS), respectively. After suitable preprocessing, the H-NMR and chromatographic data were evaluated by principal component analysis (PCA). The PCA combining data from primary metabolites and phenolic compounds allowed the separation of the clusters in all cases, allowing discrimination of processed and unprocessed peach purees, both separately and pooled.
View Article and Find Full Text PDFA multilateral approach that includes both biotic and climatic data was developed to detect the main variables that affect the ecology and population dynamics of woolly apple aphid Eriosoma lanigerum (Hausmann). Crawlers migrated up and down the trunk mainly from spring to autumn and horizontal migration through the canopy was observed from May to August. Winter temperatures did not kill the canopy colonies, and both canopy and root colonies are the source of reinfestations in Mediterranean areas.
View Article and Find Full Text PDFCuticle composition and structure may be relevant factors affecting the storage potential of fruits, but very few studies have analyzed fruit cuticle composition from a postharvest perspective. In this work, the chemical composition of waxes and cutin (major cuticular components) was analyzed in cuticle samples isolated from "Celeste" and "Somerset" cherries (Prunus avium L.) after cold storage at 0 °C.
View Article and Find Full Text PDF