Publications by authors named "Ferraina C"

AMBRA1 is a crucial factor for nervous system development, and its function has been mainly associated with autophagy. It has been also linked to cell proliferation control, through its ability to regulate c-Myc and D-type cyclins protein levels, thus regulating G1-S transition. However, it remains still unknown whether AMBRA1 is differentially regulated during the cell cycle, and if this pro-autophagy protein exerts a direct role in controlling mitosis too.

View Article and Find Full Text PDF

Medulloblastoma (MB) is a childhood malignant brain tumour comprising four main subgroups characterized by different genetic alterations and rate of mortality. Among MB subgroups, patients with enhanced levels of the c-MYC oncogene (MB) have the poorest prognosis. Here we identify a previously unrecognized role of the pro-autophagy factor AMBRA1 in regulating MB.

View Article and Find Full Text PDF

The early secretory pathway and autophagy are two essential and evolutionarily conserved endomembrane processes that are finely interlinked. Although growing evidence suggests that intracellular trafficking is important for autophagosome biogenesis, the molecular regulatory network involved is still not fully defined. In this study, we demonstrate a crucial effect of the COPII vesicle-related protein TFG (Trk-fused gene) on ULK1 puncta number and localization during autophagy induction.

View Article and Find Full Text PDF

In vertebrates, mitochondria are tightly preserved energy producing organelles, which sustain nervous system development and function. The understanding of proteins that regulate their homoeostasis in complex animals is therefore critical and doing so via means of systemic analysis pivotal to inform pathophysiological conditions associated with mitochondrial deficiency. With the goal to decipher the role of the ATPase inhibitory factor 1 (IF) in brain development, we employed the zebrafish as elected model reporting that the Atpif1a zebrafish mutant, pinotage (pnt ), which lacks one of the two IF paralogous, exhibits visual impairment alongside increased apoptotic bodies and neuroinflammation in both brain and retina.

View Article and Find Full Text PDF

The deglycase and chaperone protein DJ-1 is pivotal for cellular oxidative stress responses and mitochondrial quality control. Mutations in , encoding DJ-1, are associated with early-onset familial Parkinson's disease and lead to pathological oxidative stress and/or disrupted protein degradation by the proteasome. The aim of this study was to gain insights into the pathogenic mechanisms of selected DJ-1 missense mutations, by characterizing protein-protein interactions, core parameters of mitochondrial function, quality control regulation via autophagy, and cellular death following dopamine accumulation.

View Article and Find Full Text PDF

The 18 kDa translocator protein TSPO localizes on the outer mitochondrial membrane (OMM). Systematically overexpressed at sites of neuroinflammation it is adopted as a biomarker of brain conditions. TSPO inhibits the autophagic removal of mitochondria by limiting PARK2-mediated mitochondrial ubiquitination via a peri-organelle accumulation of reactive oxygen species (ROS).

View Article and Find Full Text PDF

Rationale: Compulsive symptoms develop in patients exposed to pramipexole (PPX), a dopaminergic agonist with high selectivity for the D3 receptor. Consistently, we demonstrated that PPX produces an exaggerated increase in contrafreeloading (CFL) for water, a repetitive and highly inflexible behavior that models core aspects of compulsive disorders.

Objectives: Given the role of the hippocampus in behavioral flexibility, motivational control, and visuospatial working memory, we investigated the role of hippocampus in the expression of PPX-induced CFL.

View Article and Find Full Text PDF

The mitochondrial ATPase Inhibitory Factor 1 (hereafter referred to as IF1) blocks the reversal of the F1Fo-ATPsynthase to prevent detrimental consumption of cellular ATP and associated demise. Herein, we infer further its molecular physiology by assessing its protective function in neurons during conditions of challenged homeostatic respiration. By adopting in vitro and in vivo protocols of hypoxia/ischemia and re-oxygenation, we show that a shift in the IF1:F1Fo-ATPsynthase expression ratio occurs in neurons.

View Article and Find Full Text PDF

Activation of c-Jun N-terminal kinase (JNK) signaling pathway is a critical step for neuronal death occurring in several neurological conditions. JNKs can be activated via receptor tyrosine kinases, cytokine receptors, G-protein coupled receptors and ligand-gated ion channels, including the NMDA glutamate receptors. While JNK has been generally associated with postsynaptic NMDA receptors, its presynaptic role remains largely unexplored.

View Article and Find Full Text PDF

Disarrangement in functions and quality control of mitochondria at synapses are early events in Alzheimer's disease (AD) pathobiology. We reported that a 20-22 kDa NH2-tau fragment mapping between 26 and 230 amino acids of the longest human tau isoform (aka NH2htau): (i) is detectable in cellular and animal AD models, as well in synaptic mitochondria and cerebrospinal fluids (CSF) from human AD subjects; (ii) is neurotoxic in primary hippocampal neurons; (iii) compromises the mitochondrial biology both directly, by inhibiting the ANT-1-dependent ADP/ATP exchange, and indirectly, by impairing their selective autophagic clearance (mitophagy). Here, we show that the extensive Parkin-dependent turnover of mitochondria occurring in NH2htau-expressing post-mitotic neurons plays a pro-death role and that UCHL-1, the cytosolic Ubiquitin-C-terminal hydrolase L1 which directs the physiological remodeling of synapses by controlling ubiquitin homeostasis, critically contributes to mitochondrial and synaptic failure in this in vitro AD model.

View Article and Find Full Text PDF

The discovery of long-term potentiation (LTP) of hippocampal synaptic transmission, which represents a classical model for learning and memory at the cellular level, has stimulated over the past years substantial progress in the understanding of pathogenic mechanisms underlying cognitive disorders, such as Alzheimer’s disease (AD). Multiple lines of evidence indicate synaptic dysfunction not only as a core feature but also a leading cause of AD. Multiple pathways may play a significant role in the execution of synaptic dysfunction and neuronal death triggered by beta-amyloid (Abeta) in AD.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a complex disorder that affects the central nervous system causing a severe neurodegeneration. This pathology affects an increasing number of people worldwide due to the overall aging of the human population. In recent years SUMO protein modification has emerged as a possible cellular mechanism involved in AD.

View Article and Find Full Text PDF

Neuronal transmission and functional synapses require mitochondria, which are mainly involved in the generation of energy (ATP and NAD(+)), regulation of cell signaling and calcium homeostasis. Particularly intriguing is emerging data suggesting the relationship between mitochondria and neurotrophic factors that can act at the synaptic level promoting neuronal transmission and plasticity. On the other hand, disturbances in mitochondrial functions might contribute to impaired synaptic transmission and neuronal degeneration in Alzheimer's Disease and other chronic and acute neurodegenerative disorders.

View Article and Find Full Text PDF

Amyloid-β protein precursor (AβPP) is a ubiquitous protein found in all cell types, suggesting basic and yet important roles, which still remain to be fully elucidated. Loss of function of AβPP has been linked to abnormal neuronal morphology and synaptic function within the hippocampus and alterations in spatial learning, suggesting a neurotrophic role for this protein. Besides AβPP, nerve growth factor (NGF) and other neurotrophins have also been shown to finely modulate neuronal excitability, synaptic plasticity, and cognitive functions.

View Article and Find Full Text PDF