Publications by authors named "Fernando de Abreu e Silva"

Purpose: Cystic fibrosis (CF) is a multisystem genetic disease caused by dysfunction of the epithelial anionic channel Cystic Fibrosis Transmembrane conductance Regulator (CFTR). Decreased mucociliary clearance because of thickened mucus is part of the pulmonary disease pathophysiology. It is controversial if the thickened airway surface liquid (ASL) is caused by the deficient chloride secretion and excessive sodium (through ENaC) and water hyperabsorption from the periciliar fluid or by the lack of bicarbonate secretion with relative acidification of the ASL.

View Article and Find Full Text PDF

A prospective study was conducted in Brazil to evaluate antimicrobial resistance patterns and molecular epidemiology of Pseudomonas aeruginosa isolates from cystic fibrosis (CF) patients with chronic lung infection. All isolates were obtained between May 2009 and June 2010 from 75 patients seen in four reference centers in Brazil: HCPA (20 patients) and HEOM (15 patients), located in southern and northeastern Brazil, respectively; IFF (20 patients) and HUPE (20 patients), both in southwestern Brazil. Antimicrobial susceptibility testing, PCR for detection of carpapenemases, and pulsed-field gel electrophoresis (PFGE) were performed in 274 isolates.

View Article and Find Full Text PDF

Objective: To determine the repeatability of the 6-minute walk test (6MWT) in adolescents and adults with cystic fibrosis (CF).

Methods: This was a prospective cross-sectional study. We included consecutive patients ages>or=15 years attending an adult CF program.

View Article and Find Full Text PDF

Burkholderia pseudomallei is rarely isolated from cystic fibrosis patients outside known areas of endemicity. We report the recovery of B. pseudomallei from the sputum of a cystic fibrosis patient who lives in Brazil.

View Article and Find Full Text PDF

Cystic fibrosis (CF) is the most common genetic disease among Caucasians. The CF gene, named cystic fibrosis transmembrane conductance regulator (CFTR), codifies a protein that acts as a channel through the epithelial membrane. The present work aimed (1) to detect sequence alterations in the nucleotide binding regions and at the membrane spanning domain of the CFTR gene and (2) to detect the following frequent mutations R347P, R347H, R334W, and Q359K (located in exon 7), DeltaF508 (located in exon 10), G542X, G551D, R553X, and S549N (located in exon 11), W1282X (located in exon 20), and N1303K (located in exon 21).

View Article and Find Full Text PDF