Publications by authors named "Fernando S Del Fiol"

is one of the etiological agents responsible for pyometra in female dogs, with conventional treatment involving ovariohysterectomy. Here, we report the isolation and full characterization of two novel lytic phages, viz. vB_EcoM_Uniso11 (ph0011) and vB_EcoM_Uniso21 (ph0021).

View Article and Find Full Text PDF

Obesity is one of the largest current public health problems. Recent studies suggest that persistent changes in the intestinal microbiota (dysbiosis) can eventually lead to obesity. A stable core of intestinal microbiota exists, primarily composed of the phyla Firmicutes and Bacteroidetes, but their proportions can be altered by antibiotics.

View Article and Find Full Text PDF

The increasing use of antibiotics is being driven by factors such as the aging of the population, increased occurrence of infections, and greater prevalence of chronic diseases that require antimicrobial treatment. The excessive and unnecessary use of antibiotics in humans has led to the emergence of bacteria resistant to the antibiotics currently available, as well as to the selective development of other microorganisms, hence contributing to the widespread dissemination of resistance genes at the environmental level. Due to this, attempts are being made to develop new techniques to combat resistant bacteria, among them the use of strictly lytic bacteriophage particles, CRISPR-Cas, and nanotechnology.

View Article and Find Full Text PDF

Since the introduction of antibiotics, they have been used freely, with their prescription occurring almost always when they were not necessary. The other major form of contact between humans and antibiotics, now unintentionally, is with the large amount of these drugs in the environment and in our food. The relationship between antibiotic use and the development of obesity has become increasingly evident and apparent in humans, with some authors clearly establishing the relationship between the large-scale use of antibiotics in the past 70 years and the "epidemic" of obesity that has occurred in parallel, almost as an adverse epidemiological effect.

View Article and Find Full Text PDF

Bacteriophage particles are the most abundant biological entities on our planet, infecting specific bacterial hosts in every known environment and being major drivers of bacterial adaptive evolution. The study of bacteriophage particles potentially sheds light on the development of new biotechnology products. Bacteriophage therapy, although not new, makes use of strictly lytic phage particles as an alternative in the antimicrobial treatment of resistant bacterial infections and is being rediscovered as a safe method due to the fact that these biological entities devoid of any metabolic machinery do not have affinity to eukaryotic cells.

View Article and Find Full Text PDF

Worldwide, bacterial resistance to chemical antibiotics has reached such a high level that endangers public health. Presently, the adoption of alternative strategies that promote the elimination of resistant microbial strains from the environment is of utmost importance. This review discusses and analyses several (potential) alternative strategies to current chemical antibiotics.

View Article and Find Full Text PDF

The emergence of antibiotic-resistant bacterial strains and the weak penetration of antibiotics into bacterial biofilms put an emphasis in the need for safe and effective alternatives for antimicrobial treatments. The application of strictly lytic bacteriophages (or phages) has been proposed as an alternative (or complement) to conventional antibiotics, allowing release of the natural predators of bacteria directly to the site of infection. In the present research effort, production of bacteriophage derivatives (starting from lytic phage particle isolates), encompassing full stabilization of their three-dimensional structure, has been attempted via housing said bacteriophage particles within lipid nanovesicles integrating a multiple water-in-oil-in-water (W/O/W) emulsion.

View Article and Find Full Text PDF