Publications by authors named "Fernando Rodriguez-Pascual"

Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases.

View Article and Find Full Text PDF

Transcriptional activity of the hypoxia inducible factor (HIF) relies on the formation of a heterodimer composed of an oxygen-regulated α-subunit and a stably expressed β-subunit. Heterodimeric HIF activates expression by binding to RCGTG motifs within promoters of hypoxia-activated genes. Some hypoxia targets also possess an adjacent HIF ancillary sequence (HAS) reported to increase transcription but whose function remains obscure.

View Article and Find Full Text PDF

Members of the lysyl oxidase (LOX) family catalyze the oxidative deamination of lysine and hydroxylysine residues in collagen and elastin in the initiation step of the formation of covalent cross-links, an essential process for connective tissue maturation. Proteolysis has emerged as an important level of regulation of LOX enzymes with the cleavage of the LOX isoform by metalloproteinases of the BMP1 (bone morphogenetic protein 1) and ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) families as a model example. Lysyl oxidase-like 1 (LOXL1), an isoform associated with pelvic organ prolapse and pseudoexfoliation (PEX) glaucoma, has also been reported to be proteolytically processed by these proteases.

View Article and Find Full Text PDF

Background: Increased collagen cross-linking (CCL) has been described in hypertensive cardiomyopathy by means of reduced serum ratio of serum carboxyterminal telopeptide of collagen type I (CITP) to matrix metalloproteinase-1 (MMP1). Previous studies have demonstrated the existence of primary impaired diastole in patients with Marfan syndrome (MFS), but little is known about the pathophysiology of this condition.

Methods: 60 MFS patients (without previous cardiovascular surgery or significant valvular regurgitation) and 24 healthy controls (age and sex-matched) were enrolled.

View Article and Find Full Text PDF

The lysyl oxidase (LOX) family of enzymes catalyze the oxidative deamination of lysine and hydroxylysine residues in collagen and elastin in the initiation step of the formation of covalent cross-linkages, an essential process for extracellular matrix (ECM) maturation. Elevated LOX expression levels leading to increased LOX activity is associated with diverse pathologies including fibrosis, cancer, and cardiovascular diseases. Different protocols have been so far established to detect and quantify LOX activity from tissue samples and cultured cells, all of them showing advantages and drawbacks.

View Article and Find Full Text PDF

Synthesis, deposition, and cross-linking of collagen are hallmarks of fibroblast to myofibroblast differentiation. Standard methods for determining collagen from tissue samples are not directly applicable to cell culture conditions, where the overall synthesis and deposition of collagen is clearly unfavorable, mainly due to quantity limitations and dilution of required extracellular remodeling factors. In this chapter, we describe the methods we have established to analyze collagen production and deposition into the extracellular matrix by cultured myo/fibroblasts, as well as to determine lysyl oxidase (LOX) activity in cell supernatants as an index of the capacity of the cell to cross-link collagen in vitro.

View Article and Find Full Text PDF

This book chapter describes the use of exogenous application of lysyl oxidase (LOX) and bone morphogenetic protein-1 (BMP1) to enhance collagen synthesis and deposition from fibroblasts in culture. The protocol includes the generation of human embryonic kidney (HEK) 293 cell lines overexpressing human LOX and BMP1 constructs in order to obtain supernatants enriched in these factors. Incubation of fibroblast monolayers with these conditioned media strongly increases the capacity of these cells to deposit collagen onto the insoluble extracellular matrix.

View Article and Find Full Text PDF

Collagens are extracellular matrix (ECM) proteins that support the structural and biomechanical integrity of many tissues. Procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) encodes the only lysyl hydroxylase (LH) isoform that specifically hydroxylates lysine residues in collagen telopeptides, a post-translational modification required for the formation of stabilized cross-links. PLOD2 expression is induced by hypoxia and transforming growth factor-β1 (TGF-β1), well-known stimuli for the formation of a fibrotic ECM, which can lead to pathological fibrosis underlying several diseases.

View Article and Find Full Text PDF

Collagens are the main structural component of the extracellular matrix and provide biomechanical properties to connective tissues. A critical step in collagen fibril formation is the proteolytic removal of N- and C-terminal propeptides from procollagens by metalloproteinases of the ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) and BMP1 (bone morphogenetic protein 1)/Tolloid-like families, respectively. BMP1 also cleaves and activates the lysyl oxidase (LOX) precursor, the enzyme catalyzing the initial step in the formation of covalent collagen cross-links, an essential process for fibril stabilization.

View Article and Find Full Text PDF

The basement membrane is a specialized sheet-like form of the extracellular matrix that provides structural support to epithelial cells and tissues, while influencing multiple biological functions, and was essential in the transition to multicellularity. By exploring a variety of genomes, Darris provide evidence that the emergence and divergence of a multifunctional Goodpasture antigen-binding protein (GPBP), a basement membrane constituent, played a role in this transition. These findings help to explain how GPBP contributed to the formation of these extracellular matrices and to more precisely define the transition to multicellular organisms.

View Article and Find Full Text PDF
Article Synopsis
  • Marfan syndrome (MFS) causes problems with blood vessels, specifically aortic aneurysms, due to improper proteins and signaling in the body.
  • Scientists studied a protein called NOX4 that is linked to these aneurysms to understand how it affects their growth and structure in mice with MFS.
  • They found that NOX4 helps damage the blood vessels in MFS, and blocking it can make the vessels stronger and healthier.
View Article and Find Full Text PDF

Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize lysyl and hydroxylysyl residues in collagen and elastin, as a first step in the stabilization of these extracellular matrix proteins through the formation of covalent cross-linkages, an essential process for connective tissue maturation. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, being genetically different protein products with a high degree of homology in the catalytic carboxy terminal end and a more variable amino terminal proregion. Intensive investigation in the last years has delineated the main biological functions of these enzymes and their involvement in several pathologies including fibrosis, cancer, and ocular disorders.

View Article and Find Full Text PDF

The main cardiovascular alteration in Marfan syndrome (MFS) is the formation of aortic aneurysms in which augmented TGF-β signaling is reported. However, the primary role of TGF-β signaling as a molecular link between the genetic mutation of fibrillin-1 and disease onset is controversial. The compartmentalization of TGF-β endocytic trafficking has been shown to determine a signaling response in which clathrin-dependent internalization leads to TGF-β signal propagation, and caveolin-1 (CAV-1) associated internalization leads to signal abrogation.

View Article and Find Full Text PDF

The contribution of epithelial-to-mesenchymal transition (EMT) to the profibrotic stiff microenvironment and myofibroblast accumulation in pulmonary fibrosis remains unclear. We examined EMT-competent lung epithelial cells and lung fibroblasts from control (fibrosis-free) donors or patients with idiopathic pulmonary fibrosis (IPF), which is a very aggressive fibrotic disorder. Cells were cultured on profibrotic conditions including stiff substrata and TGF-β1, and analyzed in terms of morphology, stiffness, and expression of EMT/myofibroblast markers and fibrillar collagens.

View Article and Find Full Text PDF

Collagens constitute a large family of extracellular matrix (ECM) proteins that play a fundamental role in supporting the structure of various tissues in multicellular animals. The mechanical strength of fibrillar collagens is highly dependent on the formation of covalent cross-links between individual fibrils, a process initiated by the enzymatic action of members of the lysyl oxidase (LOX) family. Fibrillar collagens are present in a wide variety of animals, therefore often being associated with metazoan evolution, where the emergence of an ancestral collagen chain has been proposed to lead to the formation of different clades.

View Article and Find Full Text PDF

Aims: After myocardial infarction (MI), extensive remodelling of the extracellular matrix contributes to scar formation. While aiming to preserve tissue integrity, this fibrotic response is also associated with adverse events, including a markedly increased risk of heart failure, ventricular arrhythmias, and sudden cardiac death. Cardiac fibrosis is characterized by extensive deposition of collagen and also by increased stiffness as a consequence of enhanced collagen cross-linking.

View Article and Find Full Text PDF

Lysyl oxidases (LOX) are copper-dependent enzymes that oxidize primary amine substrates to reactive aldehydes. The best-studied role of LOX enzymes is the remodeling of the extracellular matrix (ECM) in animals by cross-linking collagens and elastin, although intracellular functions have been reported as well. Five different LOX enzymes have been identified in mammals, LOX and LOX-like (LOXL) 1 to 4, showing a highly conserved catalytic carboxy terminal domain and more divergence in the rest of the sequence.

View Article and Find Full Text PDF

Objective: Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms.

View Article and Find Full Text PDF

Aims: Glutathione (GSH) is the main antioxidant against cell damage. Several pathological states course with reduced nucleophilic tone and perturbation of redox homeostasis due to changes in the 2GSH/GSSG ratio. Here, we investigated the regulation of the rate-limiting GSH biosynthetic heterodimeric enzyme γ-glutamyl-cysteine ligase (GCL) by microRNAs (miRNAs).

View Article and Find Full Text PDF

Unlabelled: The crucial role of tumor-associated fibroblasts (TAF) in cancer progression is now clear in non-small cell lung cancer (NSCLC). However, therapies against TAFs are limited due to a lack of understanding in the subtype-specific mechanisms underlying their accumulation. Here, the mechanical (i.

View Article and Find Full Text PDF

Endothelial cells in the vascular system are constantly subjected to the frictional force of shear stress due to the pulsatile nature of blood flow. Although several proteins form part of the shear stress mechano-sensing pathway, the identification of mechano-transducing pathways is largely unknown. Given the increasing evidence for a signaling function of mitochondria in endothelial cells, the aim of this study was to investigate their role as mechano-sensor organelles during laminar shear stress (LSS).

View Article and Find Full Text PDF

In patients undergoing peritoneal dialysis (PD), chronic exposure to nonphysiologic PD fluids elicits low-grade peritoneal inflammation, leading to fibrosis and angiogenesis. Phenotype conversion of mesothelial cells into myofibroblasts, the so-called mesothelial-to-mesenchymal transition (MMT), significantly contributes to the peritoneal dysfunction related to PD. A number of factors have been described to induce MMT in vitro and in vivo, of which TGF-β1 is probably the most important.

View Article and Find Full Text PDF

The endothelin (ET) system consists of two G-protein-coupled receptors (ETA and ETB), three peptide ligands (ET-1, ET-2 and ET-3), and two activating peptidases (endothelin-converting enzyme-, ECE-1 and ECE-2). While initially described as a vasoregulatory factor, shown to influence several cardiovascular diseases, from hypertension to heart failure, ET-1, the predominant form in most cells and tissues, has expanded its pathophysiological relevance by recent evidences implicating this factor in the regulation of fibrosis. In this article, we review the current knowledge of the role of ET-1 in the development of fibrosis, with particular focus on the regulation of its biosynthesis and the molecular mechanisms involved in its profibrotic actions.

View Article and Find Full Text PDF

Transforming growth factor β1 (TGF-β1) is a pleiotropic factor involved in the regulation of extracellular matrix (ECM) synthesis and remodeling. In search for novel genes mediating the action of TGF-β1 on vascular ECM, we identified the member of the lysyl oxidase family of matrix-remodeling enzymes, lysyl oxidase-like 4 (LOXL4), as a direct target of TGF-β1 in aortic endothelial cells, and we dissected the molecular mechanism of its induction. Deletion mapping and mutagenesis analysis of the LOXL4 promoter demonstrated the absolute requirement of a distal enhancer containing an activator protein 1 (AP-1) site and a Smad binding element for TGF-β1 to induce LOXL4 expression.

View Article and Find Full Text PDF