Background: Animal models have implicated the alpha(1)-adrenergic subtypes in cognitive functions relevant to schizophrenia, but no consensus exists with regard to the status of noradrenergic receptor populations in psychiatric patients. We focused on one alpha(1)-adrenergic subtype, the alpha(1A)-adrenergic receptor, and proposed that genetic variants within the regulatory region of this gene (ADRA1A) alter the expression of this receptor, influencing susceptibility toward schizophrenia.
Methods: This study examined this proposal by testing the hypothesis that single nucleotide polymorphisms (SNPs) in the promoter region of the alpha(1A)-adrenergic gene were associated with schizophrenia by performing case-control association analysis on SNPs found in a 5' upstream region, which included the putative promoter region and 5' untranslated region.
There are several lines of evidence implicating the dopamine D3 receptor in the pathophysiology of schizophrenia. The Ser9Gly polymorphism of the dopamine D3 receptor gene (DRD3) has been the most extensively investigated DRD3 variant in connection with the disease but results have been inconclusive. Recent reports indicate that the Ser9Gly polymorphism is in linkage disequilibrium with other markers, but association studies between DRD3 haplotypes and schizophrenia have had mixed results.
View Article and Find Full Text PDF