LC3 (limestone calcined clay cement) is poised to become the construction industry's future as a so-called low-carbon-footprint cement. Research into this subject has determined the minimum kaolinite content in calcined clays to guarantee good mechanical performance. This study examines the use of clay from the Valencian Community (Spain), which has a lower kaolinite content than the recommended amount (around 30%) for use in LC3 and how its performance can be enhanced by replacing part of that clay with metakaolin.
View Article and Find Full Text PDFIn this review by TC- 282 CCL, a comprehensive examination of various facets of chloride ingress in calcined clay-based concrete in aggressive chloride-rich environments is presented due to its significance in making reinforced concrete structures susceptible to chloride-induced corrosion damages. The review presents a summary of available literature focusing on materials characteristics influencing the chloride resistance of calcined clay-based concrete, such as different clay purity, kaolinite content and other clay minerals, underscoring the significance of pore refinement, pore solution composition, and chloride binding mechanisms. Further, the studies dealing with the performance at the concrete scale, with a particular emphasis on transport properties, curing methods, and mix design, are highlighted.
View Article and Find Full Text PDF