Publications by authors named "Fernando M Baidanoff"

The molecular circadian clock is based on a transcriptional/translational feedback loop in which the stability and half-life of circadian proteins is of importance. Cysteine residues of proteins are subject to several redox reactions leading to S-thiolation and disulfide bond formation, altering protein stability and function. In this work, the ability of the circadian protein period 2 (PER2) to undergo oxidation of cysteine thiols was investigated in HEK-293T cells.

View Article and Find Full Text PDF

The circadian clock at the hypothalamic suprachiasmatic nucleus (SCN) entrains output rhythms to 24-h light cycles. To entrain by phase-advances, light signaling at the end of subjective night (circadian time 18, CT18) requires free radical nitric oxide (NO•) binding to soluble guanylate cyclase (sGC) heme group, activating the cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG). Phase-delays at CT14 seem to be independent of NO•, whose redox-related species were yet to be investigated.

View Article and Find Full Text PDF

Nitric oxide (NO) is a gaseous free radical molecule with a short half-life (∼1 s), which can gain or lose an electron into three interchangeable redox-dependent forms, the radical (NO), the nitrosonium cation (NO), and nitroxyl anion (HNO). NO acts as an intra and extracellular signaling molecule regulating a wide range of functions in the cardiovascular, immune, and nervous system. NO donors are collectively known by their ability to release NOin vitro and in vivo, being proposed as therapeutic pharmacological tools for the treatment of several pathologies, such as cardiovascular disease.

View Article and Find Full Text PDF

Most physiological processes in mammals are synchronized to the daily light:dark cycle by a circadian clock located in the hypothalamic suprachiasmatic nucleus. Signal transduction of light-induced phase advances of the clock is mediated through a neuronal nitric oxide synthase-guanilyl cyclase pathway. We have employed a novel nitric oxide-donor, N-nitrosomelatonin, to enhance the photic synchronization of circadian rhythms in hamsters.

View Article and Find Full Text PDF