Publications by authors named "Fernando Lozano Vigario"

The clinical use of cancer vaccines is hampered by the low magnitude of induced T-cell responses and the need for repetitive antigen stimulation. Here, we demonstrate that liposomal formulations with incorporated STING agonists are optimally suited to deliver peptide antigens to dendritic cells in vivo and to activate dendritic cells in secondary lymphoid organs. One week after liposomal priming, systemic administration of peptides and a costimulatory agonistic CD40 antibody enables ultrarapid expansion of T cells, resulting in massive expansion of tumor-specific T cells in the peripheral blood two weeks after priming.

View Article and Find Full Text PDF

Lipid conjugates have advanced the field of lipid-based nanomedicine by promoting active-targeting (ligand, peptide, antibody), stability (PEGylation), controlled release (lipoid prodrug), and probe-based tracking (fluorophore). Recent findings indicate lipid conjugates dissociating from nanomedicine upon encountering a biological environment. Yet, implications for (pre)clinical outcomes remain unclear.

View Article and Find Full Text PDF

Introduction: Viral infections have been associated with the progression of atherosclerosis and CD8 T-cells directed against common viruses, such as influenza, Epstein-Barr virus, and cytomegalovirus, have been detected inside human atherosclerotic lesions. These virus-specific CD8 T-cells have been hypothesized to contribute to the development of atherosclerosis; however, whether they affect disease progression directly remains unclear. In this study, we aimed to characterize the activation status of virus-specific CD8 T-cells in the atherosclerotic lesion.

View Article and Find Full Text PDF

The active vitamin A metabolite, all-trans-retinoic acid (RA), primes precursor dendritic cells (DCs) into a mucosal phenotype with tolerogenic properties characterized by the expression of integrin CD103. CD103 DCs can counteract pathogenic Th1 and Th17 in inflammatory bowel disease (IBD) or celiac disease (CD). Tolerogenic manipulation of DCs using nanoparticles carrying tolerogenic adjuvants and disease-specific antigens is a valuable treatment strategy to induce antigen-specific mucosal tolerance in vivo.

View Article and Find Full Text PDF

Introduction: Nanomedicine provides a promising platform for manipulating dendritic cells (DCs) and the ensuing adaptive immune response. For the induction of regulatory responses, DCs can be targeted with nanoparticles incorporating tolerogenic adjuvants and auto-antigens or allergens.

Methods: Here, we investigated the tolerogenic effect of different liposome formulations loaded with vitamin D3 (VD3).

View Article and Find Full Text PDF

Anionic liposomal formulations have previously shown to have intrinsic tolerogenic capacity and these properties have been related to the rigidity of the particles. The combination of highly rigid anionic liposomes to deliver tolerogenic adjuvants and antigen peptides has potential applications for the treatment of autoimmune and inflammatory diseases. However, the preparation of these highly rigid anionic liposomes using traditional methods such as lipid film hydration presents problems in terms of scalability and loading efficiency of some costly tolerogenic adjuvants like 1-α,25-dihydroxyvitaminD3.

View Article and Find Full Text PDF

Dendritic cells (DCs) control adaptive immunity and are therefore attractive for in vivo targeting to either induce immune activation or tolerance, depending on disease. Liposomes, nanoparticles comprised of a lipid bi-layer, provide a nanoplatform for loading disease-relevant antigen, adjuvant and DC-targeting molecules simultaneously. However, it is yet not fully understood how liposomal formulations affect uptake by DCs and DC function.

View Article and Find Full Text PDF
Article Synopsis
  • - Neonatal sepsis is a serious illness in newborns that can lead to death or disabilities, and current tests don't work well enough to help diagnose it.
  • - Researchers think that using baby zebrafish can help study this illness because their immune systems are very similar to human babies, which could lead to better treatments.
  • - The paper suggests that zebrafish can be a useful tool in discovering new ways to treat neonatal sepsis and find better ways to test drugs for this disease.
View Article and Find Full Text PDF

Atherosclerosis is the main pathology behind most cardiovascular diseases. It is a chronic inflammatory disease characterized by the formation of lipid-rich plaques in arteries. Atherosclerotic plaques are initiated by the deposition of cholesterol-rich LDL particles in the arterial walls leading to the activation of innate and adaptive immune responses.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) are vital for maintaining a balanced immune response and their dysfunction is often associated with auto-immune disorders. We have previously shown that antigen-loaded anionic liposomes composed of phosphatidylcholine (PC) and phosphatidylglycerol (PG) and cholesterol can induce strong antigen-specific Treg responses. We hypothesized that altering the rigidity of these liposomes while maintaining their size and surface charge would affect their capability of inducing Treg responses.

View Article and Find Full Text PDF

Atherosclerosis is the predominant underlying pathology of many types of cardiovascular disease and is one of the leading causes of death worldwide. It is characterized by the retention of oxidized low-density lipoprotein (ox-LDL) in lipid-rich macrophages (foam cells) in the intima of arteries. Autoantigens derived from oxLDL can be used to vaccinate against atherosclerosis.

View Article and Find Full Text PDF