Publications by authors named "Fernando Lopez-Gallego"

The industrial use of enzymes often requires their immobilization to facilitate downstream processing and enable reuse. However, controlling enzyme orientation during immobilization is challenging and typically restricted to the N- and C-terminal regions. In this work, we propose a strategy to immobilize more active and stable amine transaminases (ATAs) by combining protein engineering with immobilization techniques.

View Article and Find Full Text PDF

Regioselective oxidation of glyceryl alkyl ethers is of utmost importance for the fabrication of substituted hydroxy ketones and enantiopure 1,2-diols as green solvents and pharmaceutical building blocks, respectively. An engineered glycerol dehydrogenase from Bacillus stearothermophilus was described to perform the regioselective oxidation of alkyl glycerol ethers, identifying position 252 as key for accepting larger substrates than glycerol. In this work, we further engineer that position through partial saturation mutagenesis to broaden the substrate scope toward other glycerol derivatives, improving enzyme kinetics and minimizing product inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • Enzyme immobilisation is crucial for creating stable biocatalysts that can be reused, but the behavior of enzymes on solid supports, especially under operational conditions, is not fully understood.
  • X-ray fluorescence imaging was used to study structural changes in a biocatalyst made from two unmodified metalloenzymes (laccase and dehydrogenase) when exposed to high temperatures or other operational conditions.
  • Findings reveal that while both protein and metal components rearrange during usage, they move as a unit, causing minor structural changes but leading to the biocatalyst's eventual exhaustion, highlighting the need for better understanding using advanced imaging techniques for improved bioprocesses.
View Article and Find Full Text PDF

Cell-free biocatalysis is gaining momentum in producing value-added chemicals, particularly in stepwise reaction cascades. However, the stability of enzyme cascades in industrial settings is often compromised when free enzymes are involved. In this study, we have developed a stable multifunctional heterogeneous biocatalyst coimmobilizing five enzymes on microparticles to transform 1,ω-diols into 1,ω-hydroxy acids.

View Article and Find Full Text PDF

Immobilization is a key enabling technology in applied biocatalysis that facilitates the separation, recovery, and reuse of heterogeneous biocatalysts. However, finding a consensus immobilization protocol for several enzymes forming a multi-enzyme system is extremely difficult and relies on a combinatorial trial-and-error approach. Herein, we describe a protocol in which 17 different carriers functionalized with different reactive groups are tested in a 96-well microtiter plate to screen up to 21 immobilization protocols for up to 18 enzymes.

View Article and Find Full Text PDF

Enzyme scaffolding is an emerging approach for enhancing the catalytic efficiency of multi-enzymatic cascades by controlling their spatial organization and stoichiometry. This study introduces a novel family of engineered SCAffolding Bricks, named SCABs, utilizing the consensus tetratricopeptide repeat (CTPR) domain for organized multi-enzyme systems. Two SCAB systems are developed, one employing head-to-tail interactions with reversible covalent disulfide bonds, the other relying on non-covalent metal-driven assembly via engineered metal coordinating interfaces.

View Article and Find Full Text PDF

In this work, the adsorption of Candida antarctica B (CALB) and Rhizomucor miehei (RML) lipases into hydrophobic wrinkled silica nanoparticles (WSNs) is investigated. WSNs are hydrophobized by chemical vapor deposition. Both proteins are homogeneously distributed inside the pores of the nanoparticles, as confirmed by Transmission Electron Microscopy and Energy Dispersive X-ray measurements.

View Article and Find Full Text PDF

Biomaterials capable of delivering therapeutic proteins are relevant in biomedicine, yet their manufacturing relies on centralized manufacturing chains that pose challenges to their remote implementation at the point of care. This study explores the viability of confined cell-free protein synthesis within porous hydrogels as biomaterials that dynamically produce and deliver proteins to in vitro and in vivo biological microenvironments. These functional biomaterials have the potential to be assembled as implants at the point of care.

View Article and Find Full Text PDF

Heterogeneous biocatalysis is highly relevant in biotechnology as it offers several benefits and practical uses. To leverage the full potential of heterogeneous biocatalysts, the establishment of well-crafted protocols, and a deeper comprehension of enzyme immobilization on solid substrates are essential. These endeavors seek to optimize immobilized biocatalysts, ensuring maximal enzyme performance within confined spaces.

View Article and Find Full Text PDF

Enzyme immobilization is a key enabling technology for a myriad of industrial applications, yet immobilization science is still too empirical to reach highly active and robust heterogeneous biocatalysts through a general approach. Conventional protein immobilization methods lack control over how enzymes are oriented on solid carriers, resulting in negative conformational changes that drive enzyme deactivation. Site-selective enzyme immobilization through peptide tags and protein domains addresses the orientation issue, but this approach limits the possible orientations to the N- and C-termini of the target enzyme.

View Article and Find Full Text PDF

The in vitro synthesis of Coenzyme A (CoA)-thioester intermediates opens new avenues to transform simple molecules into more complex and multifunctional ones by assembling cell-free biosynthetic cascades. In this review, we have systematically cataloged known CoA-dependent enzyme reactions that have been successfully implemented in vitro. To faciliate their identification, we provide their UniProt ID when available.

View Article and Find Full Text PDF

Invited for the cover of this issue are the groups of Gonzalo Jiménez-Osés and Fernando López-Gallego at CIC bioGUNE and CIC biomaGUNE, respectively. The image depicts the substrate scope of an engineered acyl transferases for the synthesis of statin derivatives. Read the full text of the article at 10.

View Article and Find Full Text PDF

Biocatalysis is a key technology enabling plastic recycling. However, despite advances done in the development of plastic-degrading enzymes, the molecular mechanisms that govern their catalytic performance are poorly understood, hampering the engineering of more efficient enzyme-based technologies. In this work, we study the hydrolysis of PET-derived diesters and PET trimers catalyzed by the highly promiscuous lipase B from Candida antarctica (CALB) through QM/MM molecular dynamics simulations supported by experimental Michaelis-Menten kinetics.

View Article and Find Full Text PDF

Cell-free systems for the in vitro production of proteins have revolutionized the synthetic biology field. In the last decade, this technology is gaining momentum in molecular biology, biotechnology, biomedicine and even education. Materials science has burst into the field of in vitro protein synthesis to empower the value of existing tools and expand its applications.

View Article and Find Full Text PDF

Biocatalysis can improve current bioprocesses by identifying or improving enzymes that withstand harsh and unnatural operating conditions. Immobilized Biocatalyst Engineering (IBE) is a novel strategy integrating protein engineering and enzyme immobilization as a single workflow. Using IBE, it is possible to obtain immobilized biocatalysts whose soluble performance would not be selected.

View Article and Find Full Text PDF

Multi-enzymatic cascades with enzymes arranged in close-proximity through a protein scaffold can trigger a substrate channeling effect, allowing for efficient cofactor reuse with industrial potential. However, precise nanometric organization of enzymes challenges the design of scaffolds. In this study, we create a nanometrically organized multi-enzymatic system exploiting engineered Tetrapeptide Repeat Affinity Proteins (TRAPs) as scaffolding for biocatalysis.

View Article and Find Full Text PDF

This study identifies new acyl donors for manufacturing statin analogues through the acylation of monacolin J acid by the laboratory evolved acyltransferase LovD9. Vinyl and p-nitrophenyl esters have emerged as alternate substrates for LovD9-catalyzed acylation. While vinyl esters can reach product yields as high as the ones obtained by α-dimethyl butyryl-S-methyl-3-mercaptopropionate (DMB-SMMP), the thioester for which LovD9 was evolved, p-nitrophenyl esters display a reactivity even higher than DMB-SMMP for the first acylation step yet the acylation product yield is lower.

View Article and Find Full Text PDF

In vitro biosynthetic pathways that condense and reduce molecules through coenzyme A (CoASH) activation demand energy and redox power in the form of ATP and NAD(P)H, respectively. These coenzymes must be orthogonally recycled by ancillary reactions that consume chemicals, electricity, or light, impacting the atom economy and/or the energy consumption of the biosystem. In this work, we have exploited vinyl esters as dual acyl and electron donor substrates to synthesize β-hydroxy acids through a non-decarboxylating Claisen condensation, reduction and hydrolysis stepwise cascade, including a NADH recycling step, catalyzed by a total of 4 enzymes.

View Article and Find Full Text PDF

β-Glucosidase (BG) catalyzes the hydrolysis of cellobiose to glucose, a substrate for fermentation to produce the carbon-neutral fuel bioethanol. Enzyme thermal stability and reusability can be improved through immobilization onto insoluble supports. Moreover, nanoscaled matrixes allow for preserving high reaction rates.

View Article and Find Full Text PDF

Immobilized multienzyme systems are gaining momentum in applied biocatalysis; however, the coimmobilization of several enzymes on one carrier is still challenging. In this work, we exploited a heterofunctional support activated with three different chemical functionalities to immobilize a wide variety of different enzymes. This support is based on agarose microbeads activated with aldehyde, amino, and cobalt chelate moieties that allow a fast and irreversible immobilization of enzymes, enhancing the thermostability of most of the heterogeneous biocatalysts (up to 21-fold higher than the soluble one).

View Article and Find Full Text PDF

The development of methods to engineer and immobilize amine transaminases (ATAs) to improve their functionality and operational stability is gaining momentum. The quest for robust, fast, and easy-to-use methods to screen the activity of large collections of transaminases, is essential. This work presents a novel and multiplex fluorescence-based kinetic assay to assess ATA activity using 4-dimethylamino-1-naphthaldehyde as an amine acceptor.

View Article and Find Full Text PDF

The activity orchestration of an unprecedented cell-free enzyme system with self-sufficient cofactor recycling enables the stepwise transformation of aliphatic diols into ω-hydroxy acids at the expense of molecular oxygen as electron acceptor. The efficiency of the biosynthetic route was maximized when two compatible alcohol dehydrogenases were selected as specialist biocatalysts for each one of the oxidative steps required for the oxidative lactonization of diols. The cell-free system reached up to 100 % conversion using 100 mM of linear C diols and performed the desymmetrization of prochiral branched diols into the corresponding ω-hydroxy acids with an exquisite enantioselectivity (ee>99 %).

View Article and Find Full Text PDF

Catalysis-based approaches for the activation of anticancer agents hold considerable promise. These principally rely on the use of metal catalysts capable of deprotecting inactive precursors of organic drugs or transforming key biomolecules available in the cellular environment. Nevertheless, the efficiency of most of the schemes described so far is rather low, limiting the benefits of catalytic amplification as strategy for controlling the therapeutic effects of anticancer compounds.

View Article and Find Full Text PDF

Scalability, process control, and modularity are some of the advantages that make flow biocatalysis a key-enabling technology for green and sustainable chemistry. In this context, rigid porous solid membranes hold the promise to expand the toolbox of flow biocatalysis due to their chemical stability and inertness. Yttrium-stabilized zirconia (YSZ) fulfills these properties; however, it has been scarcely exploited as a carrier for enzymes.

View Article and Find Full Text PDF

Multidimensional kinetic analysis of immobilized enzymes is essential to understand the enzyme functionality at the interface with solid materials. However, spatiotemporal kinetic characterization of heterogeneous biocatalysts on a microscopic level and under conditions has been rarely approached. As a case study, we selected self-sufficient heterogeneous biocatalysts where His-tagged cofactor-dependent enzymes (dehydrogenases, transaminases, and oxidases) are co-immobilized with their corresponding phosphorylated cofactors [nicotinamide adenine dinucleotide phosphate (NAD(P)H), pyridoxal phosphate (PLP), and flavin adenine dinucleotide (FAD)] on porous agarose microbeads coated with cationic polymers.

View Article and Find Full Text PDF