Background: Fascin1 is the key actin-bundling protein involved in cancer invasion and metastasis whose expression is associated with bad prognosis in tumor from different origins.
Methods: In the present study, virtual screening (VS) was performed for the search of Fascin1 inhibitors and RAL, an FDA-approved inhibitor of human immunodeficiency virus-1 (HIV-1) integrase, was identified as a potential Fascin1 inhibitor. Biophysical techniques including nuclear magnetic resonance (NMR) and differential scanning fluorimetry (DSF) were carried out in order to confirm RAL as a Fascin1 blocker.
Serrated adenocarcinoma (SAC) is a tumor recognized by the WHO as a histological subtype accounting for around 9% of colorectal carcinomas. Compared to conventional carcinomas, SACs are characterized by a worse prognosis, weak development of the immune response, an active invasive front and a frequent resistance to targeted therapy due to a high occurrence of KRAS or BRAF mutation. Nonetheless, several high-throughput studies have recently been carried out unveiling the biology of this cancer and identifying potential molecular targets, favoring a future histologically based treatment.
View Article and Find Full Text PDFBladder cancer is a current clinical and social problem. At diagnosis, most patients present with nonmuscle-invasive tumors, characterized by a high recurrence rate, which could progress to muscle-invasive disease and metastasis. Bone morphogenetic protein (BMP)-dependent signaling arising from stromal bladder tissue mediates urothelial homeostasis by promoting urothelial cell differentiation.
View Article and Find Full Text PDFThe high rates of tumor recurrence and progression represent a major clinical problem in non-muscle invasive bladder cancer. Previous data showed that EZH2-dependent signaling mediates these processes, whereas the frequent alterations of PIK3CA gene (copy gains and mutations) are predictive of reduced recurrence. Here we show, using clinical samples and bladder cancer cell lines, a functional interaction between EZH2- and PIK3CA-dependent signaling pathways.
View Article and Find Full Text PDFBladder Cancer (BC) represents a current clinical and social challenge. The recent studies aimed to describe the genomic landscape of BC have underscored the relevance of epigenetic alterations in the pathogenesis of these tumors. Among the epigenetic alterations, histone modifications occupied a central role not only in cancer, but also in normal organism homeostasis and development.
View Article and Find Full Text PDFBladder cancer (BC) is a highly prevalent disease, ranking fifth in the most common cancers worldwide. Various miRNAs have recently emerged as potential prognostic biomarkers in cancer. The miR-200 family, which repressed the epithelial-to-mesenchymal transition (EMT), is repressed in multiple advanced cancers.
View Article and Find Full Text PDFBackground: Long non-coding RNAs (lncRNAs) have been claimed as key molecular players in gene expression regulation, being involved in diverse epigenetic processes. They are aberrantly expressed in various tumors, but their exact role in bladder cancer is still obscure. We have recently found a major role of the Polycomb repression complex in recurrence of non-muscle-invasive bladder cancer.
View Article and Find Full Text PDFThe TP63 gene codes for two major isoform types, TAp63 and ΔNp63, with probable opposite roles in tumorigenesis. The ΔNp63α protein is frequently amplified and overexpressed in different epithelial tumors. Accordingly, it has been considered a potential oncogene.
View Article and Find Full Text PDF