ACS Appl Mater Interfaces
October 2022
Nanosystems that simultaneously contain fluorescent and magnetic modules can offer decisive advantages in the development of new biomedical approaches. A biomaterial that enables multimodal imaging and contains highly efficient nanoheaters together with an intrinsic temperature sensor would become an archetypical theranostic agent. In this work, we have designed a magneto-luminescent system based on FeO NPs with large heating power and thermosensitive rhodamine (Rh) fluorophores that exhibits the ability to self-monitor the hyperthermia degree.
View Article and Find Full Text PDF(1S,2S)-N-methyl-pseudoephedrine (MPS) was used as organic structure-directing agent (OSDA) for the synthesis of Mg-doped nanoporous aluminophosphates. This molecule displays a particular conformational behavior, where the presence of H-bond donor and acceptor groups provide a rigid conformational space with one asymmetric conformation preferentially occurring. MPS drives the crystallization of Mg-containing AFI materials.
View Article and Find Full Text PDFIn this work we show the use of high-resolution H MAS NMR to distinguish between two kinds of aggregation states of (1,2)-ephedrine, a chiral organic structure directing agent, occluded within AFI-type microporous aluminophosphates. We investigate in particular the supramolecular assembly of the molecules through π⋯π type interactions of their aromatic rings when confined within the one-dimensional AFI channels. A series of high-resolution two-dimensional spin diffusion spectra combined with molecular simulations and DFT calculations allowed us to distinguish different aggregation states of ephedrine molecules and precisely estimate the distances between the aromatic rings and their closest protons inside the zeolite channels as a consequence of distinct proton spin diffusion profiles.
View Article and Find Full Text PDFIn an attempt to promote the crystallization of chiral inorganic frameworks, we explore the ability of chiral (1R,2S)-ephedrine and its diastereoisomer (1S,2S)-pseudoephedrine to act as organic building blocks for the crystallization of hybrid organo-inorganic aluminophosphate frameworks in the presence of fluoride. These molecules were selected because of their particular molecular asymmetric structure, which enables a rich supramolecular chemistry and a potential chiral recognition phenomenon during crystallization. Up to four new low-dimensional materials have been produced, wherein the organic molecules form an organic bilayer in-between the inorganic networks.
View Article and Find Full Text PDFThe synthesis of microporous aluminophosphates using 1,2,3-trimethylimidazolium (123TMI) and fluoride produces three phases (HPM-3, PST-27 and triclinic AlPO4-34) depending on the amount of water and organic structure-directing agents in the synthesis mixture. Fluoride occluded in double 4-ring units was not detected by (19)F MAS NMR spectroscopy in any product. While the structure of HPM-3 remains unknown, PST-27 has been determined to be a monoclinic version of AlPO4-5 with a distorted and likely complex structure.
View Article and Find Full Text PDFChlorophylls are the most remarkable examples of fluorophores, and their fluorescence has been intensively studied as a non-invasive tool for assessment of photosynthesis. Many other fluorophores occur in plants, such as alkaloids, phenolic compounds and porphyrins. Fluorescence could be more than just a physicochemical curiosity in the plant kingdom, as several functional roles in biocommunication occur or have been proposed.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2011
Single- and two-step fluorescence resonance energy transfer (FRET) was investigated between laser dyes rhodamine 123 (R123), rhodamine 610 (R610), and oxazine 4 (Ox4). The dye molecules played the role of molecular antennas and energy donors (ED, R123), energy acceptors (EA, Ox4), or both (R610). The dye cations were embedded in the films based on layered silicate laponite (Lap) with the thickness of several μm.
View Article and Find Full Text PDFThe synthesis, photophysical and laser properties of a difluoro-boron-triaza-anthracene (BTAA) compound are analyzed in the present paper. The molecular structure of this dye is an anthracene-like core with N atoms at 4a, 9 and 10a positions where two of them (4a and 10a) are linked through a BF(2)-bridge group. This structure is reminiscent of aza-BODIPY dye with an s-indacene core, BODIPY being one of the most commonly used laser dye family in the Vis region.
View Article and Find Full Text PDFHighly emitting 8-propargylaminoBODIPY (8-PAB) 2 was prepared in 94% yield. Unlike any other BODIPY structure hitherto described in the literature, 2 displays efficient emission in the blue region of the visible spectrum with a fluorescence quantum yield up to 0.94 and high laser efficiency (35%) at 483 nm.
View Article and Find Full Text PDFAbsorption and fluorescence spectroscopies with linearly polarized light are applied to characterize the adsorbed species of rhodamine 6G (R6G) laser dye in ordered organophilic laponite (Lap) clay films for low dye loadings. The organophilic character of the clay was controlled by the number of organic surfactant dodecyl-trimethylammonium (C12TMA) cations intercalated into the interlayer space of the clay. Experimental results suggest that for moderate to high surfactant contents (>70% of the total cation exchange capacity, CEC, of the clay) the accessibility of the interlayer space for R6G molecules is reduced.
View Article and Find Full Text PDFFluorescence spectroscopy and a range of computer simulation techniques are used to study the structure directing effect of benzylpyrrolidine (BP) and (S)-(-)-N-benzylpyrrolidine-2-methanol (BPM) in the synthesis of nanoporous aluminophosphate frameworks with AFI (one-dimensional channels) and SAO (three-dimensional interconnected channels) topologies. We study the supramolecular chemistry of BP and BPM molecules in aqueous solution and compare it with the aggregation state of the molecules found when they are inside the AlPO nanopores after crystallization. The aggregation of the molecules within the structures can be explained by a combination of thermodynamic and kinetic effects.
View Article and Find Full Text PDFA combination of fluorescence spectroscopy, thermogravimetric analysis, and molecular mechanics calculations has been used to study the structure-directing effect of the aromatic benzylpyrrolidine (BP) molecule (and its monofluorinated derivatives), and (S)-(-)-N-benzylpyrrolidine-2-methanol (BPM) in the synthesis of the microporous AFI structure. The results clearly show that, while all molecules form supramolecular aggregates in concentrated water solution, BPM molecules have a much more pronounced trend to aggregate as dimers within the AFI structure due to the development of interdimer H-bond interactions. Instead, BP (and its ortho- and meta-fluorinated derivatives) SDAs tend to incorporate in the AFI structure as monomers but with the simultaneous occlusion of water molecules, while para-fluorinated BP derivatives do not form compact dimers able to be accommodated in the AFI structure.
View Article and Find Full Text PDFThe asymmetrically substituted BODIPY dyes 9a and 9b have been synthesized through a key redox step involving the alpha-nitroso derivative of the starting pyrrol. Both dyes emit fluorescence with quantum yields of ca. 0.
View Article and Find Full Text PDFMontmorillonite was thermally treated at several temperatures to reduce the charge density of its layer surface. Absorption and fluorescence (steady-state and time-resolved) spectroscopies are now applied to study the adsorption of rhodamine 3B (R3B) laser dye in reduced charge montmorillonites (RCMs) in aqueous suspensions. The decrease in the charge density increases the intermolecular distance between adsorbed R3B molecules, reducing the tendency of the dye to self-associate.
View Article and Find Full Text PDFA new method of fluorescence polarization is applied to evaluate the angle of the preferential orientation of Rhodamine 6G (R6G) dye adsorbed in supported thin films of Laponite (Lap) clay. The method is based in the determination of the fluorescence dichroic ratio, obtained from the recorded fluorescence spectra with the detection polarizer horizontally and vertically oriented, as a function of the twisted angle of the film around its vertical axis, keeping the excitation polarizer in a fixed direction. The validity of the method is checked by comparing the experimental results obtained with both vertically and horizontally polarized excitations to that previously provided by absorption spectroscopy with linearly polarized light.
View Article and Find Full Text PDFTo develop the solid-state laser oscillator based on laser dye compounds, the incorporation of rhodamine 6G (R6G, a laser dye) in cetyltrimethylammonium (CTA+) cationic surfactant/montmorillonite clay hybrid (HpC) thin solid films was investigated. The R6G/HpC samples were prepared by immersing the HpC films into a R6G aqueous solution with various concentration. X-ray diffraction patterns of the films of HpC, measured before and after the intercalation of R6G, proved the coexistence of both the dye and surfactant in clay interlayer spaces.
View Article and Find Full Text PDF