Publications by authors named "Fernando L Teixeira"

We present a data-driven reduced-order modeling of the space-charge dynamics for electromagnetic particle-in-cell (EMPIC) plasma simulations based on dynamic mode decomposition (DMD). The dynamics of the charged particles in kinetic plasma simulations such as EMPIC is manifested through the plasma current density defined along the edges of the spatial mesh. We showcase the efficacy of DMD in modeling the time evolution of current density through a low-dimensional feature space.

View Article and Find Full Text PDF

Propellant mass gauging under micro-gravity conditions is a challenging task due to the unpredictable position and shape of the fuel body inside the tank. Micro-gravity conditions are common for orbiting satellites and rockets that operate on limited fuel supplies. Capacitance sensors have been investigated for this task in recent years; however, the effect of various positions and shapes of the fuel body is not analyzed in detail.

View Article and Find Full Text PDF

Field solutions for a conventional Veselago-Pendry (VP) flat lens with =- and =- can be derived based on transformation optics (TO) principles. The TO viewpoint makes it clear that perfect imaging by a VP lens is a consequence of multivalued nature of the particular coordinate transformation involved. This transformation is equivalent to a "space folding" whereby one point in the transformed domain (source point) is mapped to three different points in the physical domain (the original source point plus two focal points).

View Article and Find Full Text PDF

Visual arts and entertainment related industries are continuously looking at promising innovative technologies to improve users' experience with state-of-the-art visualization platforms. This requires further developments on pixel resolution and device miniaturization which can be achieved, for instance, with high contrast materials, such as crystalline silicon (c-Si). Here, a new broadband stereoscopic hologram metasurface is introduced, where independent phase control is achieved for two orthogonal polarizations in the visible spectrum.

View Article and Find Full Text PDF

This paper reports on the first hologram in transmission mode based on a c-Si metasurface in the visible range. The hologram shows high fidelity and high efficiency, with measured transmission and diffraction efficiencies of ~65% and ~40%, respectively. Although originally designed to achieve full phase control in the range [0-2π] at 532 nm, these holograms have also performed well at 444.

View Article and Find Full Text PDF

We discuss the numerically stable, spectral-domain computation and extraction of the scattered electromagnetic field excited by distributed sources embedded in planar-layered environments, where each layer may exhibit arbitrary and independent electrical and magnetic anisotropic response and loss profiles. This stands in contrast to many standard spectral-domain algorithms that are restricted to computing the fields radiated by Hertzian dipole sources in planar-layered environments where the media possess azimuthal-symmetric material tensors (i.e.

View Article and Find Full Text PDF

We discuss the application of complex-plane Gauss-Laguerre quadrature (CGLQ) to efficiently evaluate two-dimensional Fourier integrals arising as the solution to electromagnetic fields radiated by elementary dipole antennas embedded within planar-layered media exhibiting arbitrary material parameters. More specifically, we apply CGLQ to the long-standing problem of rapidly and efficiently evaluating the semi-infinite length "tails" of the Fourier integral path while simultaneously and robustly guaranteeing absolute, exponential convergence of the field solution despite diversity in the doubly anisotropic layer parameters, source type (i.e.

View Article and Find Full Text PDF

We develop a general-purpose formulation, based on two-dimensional spectral integrals, for computing electromagnetic fields produced by arbitrarily oriented dipoles in planar-stratified environments, where each layer may exhibit arbitrary and independent anisotropy in both its (complex) permittivity and permeability tensors. Among the salient features of our formulation are (i) computation of eigenmodes (characteristic plane waves) supported in arbitrarily anisotropic media in a numerically robust fashion, (ii) implementation of an hp-adaptive refinement for the numerical integration to evaluate the radiation and weakly evanescent spectra contributions, and (iii) development of an adaptive extension of an integral convergence acceleration technique to compute the strongly evanescent spectrum contribution. While other semianalytic techniques exist to solve this problem, none have full applicability to media exhibiting arbitrary double anisotropies in each layer, where one must account for the whole range of possible phenomena (e.

View Article and Find Full Text PDF

Lattice approximations for partial differential equations describing physical phenomena are commonly used for the numerical simulation of many problems otherwise intractable by pure analytical approaches. The discretization inevitably leads to many of the original symmetries to be broken or modified. In the case of Maxwell's equations for example, invariance and isotropy of the speed of light in vacuum is invariably lost because of the so-called grid dispersion.

View Article and Find Full Text PDF