Background: Solving the shortest path and min-cut problems are key in achieving high-performance and robust communication networks. Those problems have often been studied in deterministic and uncorrelated networks both in their original formulations as well as in several constrained variants. However, in real-world networks, link weights (e.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
April 2014
When two viruses compete for healthy nodes in a simple network and both spreading rates are above the epidemic threshold, only one virus will survive. However, if we prevent the viruses from dying out, rich dynamics emerge. When both viruses are identical, one virus always dominates the other, but the dominating and dominated virus alternate.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
July 2011
The decrease of the spectral radius, an important characterizer of network dynamics, by removing links is investigated. The minimization of the spectral radius by removing m links is shown to be an NP-complete problem, which suggests considering heuristic strategies. Several greedy strategies are compared, and several bounds on the decrease of the spectral radius are derived.
View Article and Find Full Text PDF