Publications by authors named "Fernando J Irazoqui"

The challenge of low water solubility in pharmaceutical science profoundly impacts drug absorption and therapeutic effectiveness. Nanocrystals (NC), consisting of drug molecules and stabilizing agents, offer a promising solution to enhance solubility and control release rates. In the pharmaceutical industry, top-down techniques are favored for their flexibility and cost-effectiveness.

View Article and Find Full Text PDF

Lead (Pb), a common environmental contaminant, and ethanol (EtOH), a widely available drug of abuse, are well-known neurotoxicants. In vivo, experimental evidence indicates that Pb exposure affects oxidative EtOH metabolism with a high impact on living organisms. On these bases, we evaluated the consequences of combined Pb and EtOH exposure on aldehyde dehydrogenase 2 (ALDH2) functionality.

View Article and Find Full Text PDF

Background: Post-translational modifications are key factors in the modulation of nuclear protein functions controlling cell physiology and an individual's health.

Objectives: This study examined the influence of protein restriction during the perinatal period on the nuclear O-N-acetylgalactosamine (O-GalNAc) glycosylation of cells from the liver and parts of the brain in the rat.

Methods: Pregnant Wistar rats were divided into 2 groups on day 14 of pregnancy and fed ad libitum 1 of 2 isocaloric diets containing 24% (well-fed) or 8% (protein-restricted diet) casein until the end of the experiment.

View Article and Find Full Text PDF

Polypeptide N-acetylgalactosamine transferase 3 (ppGalNAc-T3) is an enzyme involved in the initiation of O-GalNAc glycan biosynthesis. Acting as a writer of frequent post-translational modification (PTM) on human proteins, ppGalNAc-T3 has key functions in the homeostasis of human cells and tissues. We review the relevant roles of this molecule in the biosynthesis of O-GalNAc glycans, as well as in biological functions related to human physiological and pathological conditions.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged during the last months of 2019, spreading throughout the world as a highly transmissible infectious illness designated as COVID-19. Vaccines have now appeared, but the challenges in producing sufficient material and distributing them around the world means that effective treatments to limit infection and improve recovery are still urgently needed. This review focuses on the relevance of different glycobiological molecules that could potentially serve as or inspire therapeutic tools during SARS-CoV-2 infection.

View Article and Find Full Text PDF

Antibodies against several self-glycans on glycosphingolipids are frequently detected in different neurological disorders. Their pathogenic role is profusely documented, but the keys for their origin remain elusive. Additionally, antibodies recognizing non-self glycans appear in normal human serum during immune response to bacteria.

View Article and Find Full Text PDF

Glycosylation is a very frequent post-translational modification in proteins, and the initiation of O-N-acetylgalactosamine (O-GalNAc) glycosylation has been recently described on relevant nuclear proteins. Here we evaluated the nuclear incorporation of a second sugar residue in the biosynthesis pathway of O-GalNAc glycans to yield the terminal core 1 glycan (C1G, Galβ3GalNAcαSer/Thr). Using confocal microscopy, enzymatic assay, affinity chromatography, and mass spectrometry, we analyzed intact cells, purified nuclei and soluble nucleoplasms to identify the essential factors for C1G biosynthesis in the cell nucleus.

View Article and Find Full Text PDF

Background: Different neurological disorders frequently display antibodies against several self-glycans. Increasing evidence supports their pathogenic role; however, far less is known about their origin. Meanwhile, antibodies recognizing non-self glycans appear in normal human serum during immune response to bacteria.

View Article and Find Full Text PDF

Described in several epithelial cancer cells, Tn- (GalNAcα1-O-Ser/Thr) and T- (Galβ3GalNAcα1-O-Ser/Thr) antigens are examples of tumor-associated antigens. Increased expression of Tn- and T-antigens is associated with tumor invasion and metastasis, and patients with high concentration of anti-Tn and anti-T antibodies have a more benign evolution of pathology. Asialofetuin (ASF) and ovine submaxillary mucin (OSM) are two glycoproteins that expose T- and Tn-antigen, respectively.

View Article and Find Full Text PDF

Biological functions of nuclear proteins are regulated by post-translational modifications (PTMs) that modulate gene expression and cellular physiology. However, the role of linked glycosylation (-GalNAc) as a PTM of nuclear proteins in the human cell has not been previously reported. Here, we examined in detail the initiation of GalNAc glycan biosynthesis, representing a novel PTM of nuclear proteins in the nucleus of human cells, with an emphasis on HeLa cells.

View Article and Find Full Text PDF

O-GalNAc glycans are important structures in cellular homeostasis. Their biosynthesis is initiated by members of the polypeptide GalNAc-transferase (ppGalNAc-T) enzyme family. Mutations in ppGalNAc-T3 isoform cause diseases (congenital disorders of glycosylation) in humans.

View Article and Find Full Text PDF

An experimental model of Guillain-Barré Syndrome has been established in recent years. Rabbits develop disease upon immunization with a single dose of an emulsion containing bovine brain gangliosides, KLH and complete Freund's adjuvant. Within a period of four to ten weeks after immunization, they began to produce anti-ganglioside IgG-antibodies first, and to show clinical signs of neuropathy afterwards.

View Article and Find Full Text PDF

Glycan biosynthesis occurs mainly in Golgi. Molecular organization and functional regulation of this process are not well understood. We evaluated the extrinsic effect of lectin domains (β-trefoil fold) of polypeptide GalNAc-transferases (ppGalNAc-Ts) on catalytic activity of glycosyltransferases during O-GalNAc glycan biosynthesis.

View Article and Find Full Text PDF

Elevated titers of serum antibodies against GM1 ganglioside are associated with a variety of autoimmune neuropathies. Much evidence indicates these autoantibodies play a primary role in the disease processes, but the mechanism for their appearance is unclear. We studied the fine specificity of anti-GM1 antibodies of the IgG isotype present in sera from patients with Guillain-Barré syndrome (GBS), using thin-layer chromatogram-immunostaining of GM1, asialo-GM1 (GA1), GD1b and GM1-derivatives with small modifications on the oligosaccharide moiety.

View Article and Find Full Text PDF

Lectins are glycan-binding proteins that are resistant to digestion in the gastrointestinal tract and enter intact to blood circulation. The aim of this study was to evaluate the influence of edible mushroom Agaricus bisporus lectin (ABL) on innate and adaptive immune responses as well as its effect in two different experimental pathologies that involve the immune system. ABL inhibited in vitro nitric oxide (NO) production by mouse peritoneal macrophages in response to the pro-inflammatory stimuli lipopolysaccharides (LPS).

View Article and Find Full Text PDF

Polypeptide GalNAc-transferases (ppGalNAc-Ts) are a family of enzymes that catalyze the initiation of mucin-type O-glycosylation. All ppGalNAc-T family members contain a common (QXW)3 motif, which is present in the R-type lectin group. The acetylation site K521 is part of the QKW motif of β-trefoil in the lectin domain of ppGalNAc-T2.

View Article and Find Full Text PDF

Immunization of rabbits with bovine brain gangliosides induced an experimental neuropathy, with clinical signs resembling Guillain-Barré syndrome. All the immunized animals developed immunoglobulin G immunoreactivity to GM1 ganglioside. In a few (4 of 27) animals, an additional anti-ganglioside antibody population showing an unusual binding behavior was detected.

View Article and Find Full Text PDF

Post-translational acetylation is an important molecular regulatory mechanism affecting the biological activity of proteins. Polypeptide GalNAc transferases (ppGalNAc-Ts) are a family of enzymes that catalyze initiation of mucin-type O-glycosylation. All ppGalNAc-Ts in mammals are type II transmembrane proteins having a Golgi lumenal region that contains a catalytic domain with glycosyltransferase activity, and a C-terminal R-type ("ricin-like") lectin domain.

View Article and Find Full Text PDF

Cancer-associated mucins show frequent alterations of oligosaccharide chain profile. Terminal structures may be deleted, thereby exposing normally 'cryptic' structures such as Tn (GalNAcα-O-Ser/Thr) and T antigen (Galβ1-3GalNAcα-O-Ser/Thr). Overexpression of these commonly hidden glycoforms, and reduced level of naturally occurring anti-T or anti-Tn antibodies, is associated with epithelial tumor progression and aggressiveness.

View Article and Find Full Text PDF

Background: Clinical severity of Guillain-Barré syndrome (GBS) is highly variable, but the immunopathological reason is unknown.

Objective: The study was designed to show which antibody parameters are associated with disease severity in GBS patients with serum anti-GM1 IgG antibodies.

Methods: Thirty-four GBS patients with anti-GM(1) IgG antibodies were grouped into two categories according to disease severity at nadir: mild (grades 1-3 by Hughes functional scale, n=13) and severe (grades 4 and 5, n=21).

View Article and Find Full Text PDF

Bioengineering of Galbeta3GalNAcalpha, known as Thomsen-Friedenreich disaccharide (TFD), is studied to promote glycan immunogenicity and immunotargeting to tumor T antigen (Galbeta3GalNAcalpha-O-Ser/Thr). Theoretical studies on disaccharide conformations by energy minimization of structures using MM2 energy function showed that pentalysine (Lys5) linker and benzyl (Bzl) residue enhance TFD rigidity of the glycosidic bond. Antibodies raised against BzlalphaTFD-Lys5 immunogen recognize tumor T antigen.

View Article and Find Full Text PDF

Glycans are a class of molecules with high structural variability, frequently found in the plasma membrane facing the extracellular space. Because of these characteristics, glycans are often considered as recognition molecules involved in cell social functions, and as targets of pathogenic factors. Induction of anti-glycan antibodies is one of the early events in immunological defense against bacteria that colonize the body.

View Article and Find Full Text PDF

Glycans are key structures involved in biological processes such as cell attachment, migration, and invasion. Information coded on cell-surface glycans is frequently deciphered by proteins, as lectins, that recognize specific carbohydrate topology. Here, we describe the fine carbohydrate specificity of Euphorbia milii lectin (EML).

View Article and Find Full Text PDF

Cancer-associated mucins show frequent alterations of their oligosaccharide chain profile, with a switch to unmask normally cryptic O-glycan backbone and core regions. Epithelial tumour cells typically show overexpression of the uncovered Gal(beta)1-3GalNAc(alpha)-O-Ser/Thr (Core 1) structure, known as the T antigen or the Thomsen-Friedenreich antigen, the oligosaccharide chain of which is called the Thomsen-Friedenreich disaccharide (TFD). T antigen expression has been associated with immunosuppression, metastasis dissemination, and the proliferation of cancer cells.

View Article and Find Full Text PDF