Background: Understanding the interaction mechanisms and the relevant binding constants between humic acids and emerging or regulated pollutants is of utmost importance in predicting their geochemical mobility, bioavailability, and degradation. Fluorescence spectroscopy, UV-vis spectroscopy, equilibrium dialysis, and solid-phase extraction combined with liquid chromatography-mass spectrometry have been employed to elucidate interactions of humic acids with organic micropollutants, especially pharmaceutical drugs. These methods demand large sample volumes, long equilibration times, and laborious extraction steps which may imply analytical errors.
View Article and Find Full Text PDFThis paper evaluates linear and nonlinear regression analysis to describe the empirical adsorption kinetics using pseudo-first-order (PFO) and pseudo-second-order (PSO) models. These models have been used to characterize the performance of adsorbents for environmental remediation and environmental modeling. Data were simulated using the PFO and PSO models with 1, 2, and 5% noise levels and fitted by nonlinear and linearized PFO and PSO equations.
View Article and Find Full Text PDFEven at low concentrations in environmental waters, some viruses are highly infective, making them a threat to human health. They are the leading cause of waterborne enteric diseases. In agriculture, plant viruses in irrigation and runoff water threat the crops.
View Article and Find Full Text PDFThis paper describes the preparation of polymer monolithic columns in the confines of fluorinated ethylene propylene (FEP) tubes. These tubes are cheap, chemically stable, and widely used in flow analysis laboratories. UV-initiated grafting with 5 wt% benzophenone in methanol for 1 h activated the internal surface walls, thus enabling the further covalent binding of ethylene glycol dimethacrylate (EDMA) from a 15 wt% solution in methanol, also via photografting.
View Article and Find Full Text PDFSince phosphate is strongly related to eutrophication of environmental waters, several research groups quest for materials that can efficiently remove phosphate from wastewaters before it contaminates lakes and reservoirs. In the present work, a commercial clay mineral (K10 montmorillonite) modified with Fe polyhydroxy cations was investigated as an adsorbent for phosphate. The incorporation of the polycations did not alter the main conformational characteristics of the montmorillonite, as verified by specific surface area measurements, X-ray diffractometry, FTIR, electron microscopy, and zeta potential titrations.
View Article and Find Full Text PDFA sequential injection - square wave anodic stripping voltammetry (SI-SWASV) method for determination of Se(IV) at a gold working electrode was developed to investigate the adsorption of Se(IV) onto vermiculite intercalated with Fe(III) polyhydroxy cations. The limits of detection and quantification were 0.060 and 0.
View Article and Find Full Text PDFGeochemical mobility of Hg(II) species is strongly affected by the interactions of these compounds with naturally occurring adsorbents such as humic acids, clay minerals, oxides, etc. Interactions among these sorbents affect their affinity for Hg(II) and a full understanding of these processes is still lacking. The present work describes the influence of a humic acid (HA) sample on the adsorption of Hg(II) by vermiculite (VT).
View Article and Find Full Text PDFThis paper reports the development of a sequential injection (SI) method to study the complexation of Hg(II) by humic acid (HA) using square wave anodic stripping voltammetry at a screen-printed gold electrode (SPGE). The SI system injected samples (in 0.020 mol L(-1) NaNO(3) and pH 6.
View Article and Find Full Text PDF