Publications by authors named "Fernando Geu-Flores"

The protein crops known as lupins have been bred to accumulate low levels of antinutritional alkaloids, neglecting their potential as sources of valuable metabolites. Here, we engineered narrow-leafed lupin (NLL) to accumulate large amounts of a single alkaloid of industrial interest called (-)-sparteine. While (-)-sparteine is recognized as a key auxiliary molecule in chiral synthesis, its variable price and limited availability have prevented its large-scale use.

View Article and Find Full Text PDF

Lupins are high-protein crops that are rapidly gaining interest as hardy alternatives to soybean; however, they accumulate antinutritional alkaloids of the quinolizidine type (QAs). Lupin domestication was enabled by the discovery of genetic loci conferring low QA levels (sweetness), but the precise identity of the underlying genes remains uncertain. We show that , the most common sweet locus in white lupin, encodes an acetyltransferase (AT) unexpectedly involved in the early QA pathway.

View Article and Find Full Text PDF

The model plant Nicotiana benthamiana is an increasingly attractive organism for the production of high-value, biologically active molecules. However, N. benthamiana accumulates high levels of pyridine alkaloids, in particular nicotine, which complicates the downstream purification processes.

View Article and Find Full Text PDF

The ginkgo tree (Ginkgo biloba) is considered a living fossil due to its 200 million year's history under morphological stasis. Its resilience is partly attributed to its unique set of specialized metabolites, in particular, ginkgolides and bilobalide, which are chemically complex terpene trilactones. Here, we use a gene cluster-guided mining approach in combination with co-expression analysis to reveal the primary steps in ginkgolide biosynthesis.

View Article and Find Full Text PDF

Covering: up to 2022Quinolizidine alkaloids (QAs) are a class of alkaloids that accumulate in a variety of leguminous plants and have applications in the agricultural, pharmaceutical and chemical industries. QAs are notoriously present in cultivated lupins ( spp.) where they complicate the use of the valuable, high-protein beans due to their toxic properties and bitter taste.

View Article and Find Full Text PDF

Background: Lupins are promising protein crops with an increasing amount of genomic and transcriptomic resources. The new resources facilitate the in silico identification of candidate genes controlling important agronomic traits. However, a major bottleneck for lupin research and crop improvement is the in planta characterization of gene function.

View Article and Find Full Text PDF
Article Synopsis
  • Faba bean (Vicia faba L.) is a nutrient-rich legume, but its seeds can produce harmful compounds called vicine and convicine, which can lead to favism in susceptible individuals.
  • Researchers identified an enzyme named VC1, which is crucial for the production of these compounds, revealing that its activity is linked to the purine GTP rather than previously thought pyrimidine sources.
  • The study suggests that faba bean varieties with low levels of these harmful substances have a mutation in the VC1 gene, offering a potential pathway to breeding safer faba bean cultivars.
View Article and Find Full Text PDF

White lupin (Lupinus albus L.) is an annual crop cultivated for its protein-rich seeds. It is adapted to poor soils due to the production of cluster roots, which are made of dozens of determinate lateral roots that drastically improve soil exploration and nutrient acquisition (mostly phosphate).

View Article and Find Full Text PDF

Narrow-leafed lupin (NLL, Lupinus angustifolius) is a promising legume crop that produces seeds with very high protein content. However, NLL accumulates toxic quinolizidine alkaloids (QAs) in most of its tissues, including the seeds. To determine the level of in situ biosynthesis in the seeds, we compared the accumulation of QAs with the expression of the biosynthetic gene lysine decarboxylase (LDC) in developing seeds and pods of a bitter (high-QA) variety of NLL.

View Article and Find Full Text PDF

Lupins (Lupinus spp.) are nitrogen-fixing legumes that accumulate toxic alkaloids in their protein-rich beans. These anti-nutritional compounds belong to the family of quinolizidine alkaloids (QAs), which are of interest to the pharmaceutical and chemical industries.

View Article and Find Full Text PDF

Plants sequester intermediates of metabolic pathways into different cellular compartments, but the mechanisms by which these molecules are transported remain poorly understood. Monoterpene indole alkaloids, a class of specialized metabolites that includes the anticancer agent vincristine, antimalarial quinine and neurotoxin strychnine, are synthesized in several different cellular locations. However, the transporters that control the movement of these biosynthetic intermediates within cellular compartments have not been discovered.

View Article and Find Full Text PDF

As a basis for future investigations of evolutionary trajectories and biosynthetic mechanisms underlying variations in glucosinolate structures, we screened members of the crucifer tribe Cardamineae by HPLC-MS/MS, isolated and identified glucosinolates by NMR, searched the literature for previous data for the tribe, and collected HPLC-MS/MS data for nearly all glucosinolates known from the tribe as well as some related structures (70 in total). This is a considerable proportion of the approximately 142 currently documented natural glucosinolates. Calibration with authentic references allowed distinction (or elucidation) of isomers in many cases, such as distinction of β-hydroxyls, methylthios, methylsulfinyls and methylsulfonyls.

View Article and Find Full Text PDF

The secoiridoids are the main class of specialized metabolites present in olive (Olea europaea L.) fruit. In particular, the secoiridoid oleuropein strongly influences olive oil quality because of its bitterness, which is a desirable trait.

View Article and Find Full Text PDF

The carbon skeleton of ecologically and pharmacologically important iridoid monoterpenes is formed in a reductive cyclization reaction unrelated to canonical terpene cyclization. Here we report the crystal structure of the recently discovered iridoid cyclase (from Catharanthus roseus) bound to a mechanism-inspired inhibitor that illuminates substrate binding and catalytic function of the enzyme. Key features that distinguish iridoid synthase from its close homolog progesterone 5β-reductase are highlighted.

View Article and Find Full Text PDF

Here we report the discovery of a cytochrome P450 that is required for the biosynthesis of vindoline, a plant-derived natural product used for semi-synthesis of several anti-cancer drugs. This enzyme catalyzes the formation of an epoxide that can undergo rearrangement to yield the vincamine-eburnamine backbone, thereby providing evidence for the long-standing hypothesis that the aspidosperma- and eburnamine-type alkaloids are biosynthetically related.

View Article and Find Full Text PDF

The core structure of the iridoid monoterpenes is formed by a unique cyclization reaction. The enzyme that catalyzes this reaction, iridoid synthase, is mechanistically distinct from other terpene cyclases. Here we describe the synthesis of two substrate analogs to probe the mechanism of iridoid synthase.

View Article and Find Full Text PDF

Hydroxylation of tabersonine at the C-16 position, catalyzed by tabersonine 16-hydroxylase (T16H), initiates the synthesis of vindoline that constitutes the main alkaloid accumulated in leaves of Catharanthus roseus. Over the last decade, this reaction has been associated with CYP71D12 cloned from undifferentiated C. roseus cells.

View Article and Find Full Text PDF

Camalexin is a tryptophan-derived phytoalexin that is induced in the model plant Arabidopsis thaliana upon pathogen attack. Only few genes in the biosynthetic pathway of camalexin remain unidentified, however, investigation of candidate genes for these steps has proven particularly difficult partly because of redundancy in the genome of Arabidopsis. Here we describe metabolic engineering of the camalexin biosynthetic pathway in the transient Nicotiana benthamiana expression system.

View Article and Find Full Text PDF

The iridoids comprise a large family of distinctive bicyclic monoterpenes that possess a wide range of pharmacological activities, including anticancer, anti-inflammatory, antifungal and antibacterial activities. Additionally, certain iridoids are used as sex pheromones in agriculturally important species of aphids, a fact that has underpinned innovative and integrated pest management strategies. To harness the biotechnological potential of this natural product class, the enzymes involved in the biosynthetic pathway must be elucidated.

View Article and Find Full Text PDF

Glucosinolates are biologically active natural products characteristic of crucifers, including oilseed rape, cabbage vegetables and the model plant Arabidopsis thaliana. Crucifer-specialist insect herbivores, like the economically important pest Plutella xylostella (diamondback moth), frequently use glucosinolates as oviposition stimuli. This suggests that the transfer of a glucosinolate biosynthetic pathway to a non-crucifer would stimulate oviposition on an otherwise non-attractive plant.

View Article and Find Full Text PDF

The defense-related plant metabolites known as glucosinolates play important roles in agriculture, ecology, and human health. Despite an advanced biochemical understanding of the glucosinolate pathway, the source of the reduced sulfur atom in the core glucosinolate structure remains unknown. Recent evidence has pointed toward GSH, which would require further involvement of a GSH conjugate processing enzyme.

View Article and Find Full Text PDF

Background: Metabolic engineering in heterologous organisms is an attractive approach to achieve efficient production of valuable natural products. Glucosinolates represent a good example of such compounds as they are thought to be the cancer-preventive agents in cruciferous plants. We have recently demonstrated that it is feasible to engineer benzylglucosinolate (BGLS) in the non-cruciferous plant Nicotiana benthamiana by transient expression of five genes from Arabidopsis thaliana.

View Article and Find Full Text PDF

The explosive development of the field of molecular biology has led to the need for simpler and more efficient cloning techniques. These requirements are elegantly met by the ligation-free cloning technique called USER cloning. USER cloning is suitable not only for everyday and high-throughput cloning but also for the one-step construction of complex DNA constructs, which can be achieved in a variant called USER fusion.

View Article and Find Full Text PDF

Glucosinolates are sulfur-rich secondary metabolites characteristic of the Brassicales order with important biological and economic roles in plant defense and human nutrition. Application of systems biology tools continues to identify genes involved in the biosynthesis of glucosinolates. Recent progress includes genes in all three phases of the pathway, i.

View Article and Find Full Text PDF