In tropical and subtropical climate regions, heat stress is one of the main causes of production losses in laying quails, aggravated by the antinutritional effects of the phytate in diet ingredients, which negatively affect the bioavailability of minerals, especially calcium and phosphorus. This situation results in a reduction in production and the quality of eggs from commercial laying quails. Several nutritional strategies are utilized to reduce the adverse effects of high temperatures and antinutritional factors such as phytate.
View Article and Find Full Text PDFFront Vet Sci
December 2024
The present study aimed to evaluate the effects of different nutritional plans on meat quails subjected to heat stress. A total of 324 quails male European quails () were used, with an average initial weight of 121.48 g ± 3.
View Article and Find Full Text PDFPoult Sci
February 2023
Oxidative stress significantly compromises the production efficiency of laying hens. It has been reported in literature that selenium (Se) in poultry diets has a positive effect on mitigating these effects. This study has been carried out to evaluate the effects of Se supplementation in feeds, from either an inorganic or a hydroxy-selenomethionine (OH-SeMet) source, on the performance and physiological traits of 50- to 70-wk-old Dekalb Brown laying hens under heat stress, and on their egg quality after different storage durations.
View Article and Find Full Text PDFThe intestinal physiology and mechanisms involved in nutrient transport are not well established in quails (Coturnix coturnix japonica). The present study assessed the growth performance, morphological development, duodenal density and the expression of Sglt1 and Glut2 of female Japanese quails from 1 to 49 days of age. The three small intestine segments were sampled weekly from 1 to 49 days of age to evaluate villus height, crypt depth and villus: crypt ratio, and goblet cell counts.
View Article and Find Full Text PDFExperiment I: T basal diet with 25% crude protein (CP) + limiting amino acids (LA); T = 20% CP + LA; T = 20% CP + LA + L-glycine; T = 20% CP + LA + L-glutamate; T = 20% CP + LA + L-glycine + L-glutamate. Experiment II: T = basal diet with 22% CP + LA; T = 20% CP + LA; T = 17.6% CP + LA + L-glycine; T = 17.
View Article and Find Full Text PDFPLoS One
April 2016
This study assessed the effect of both embryonic thermal manipulation and dietary threonine level on the response of broilers inoculated with Salmonella Enteritidis, considering bacterial counts in the cecal contents, intestinal morphology, mucin and heat shock protein 70 gene expression, body weight and weight gain. Thermal manipulation was used from 11 days of incubation until hatch, defining three treatments: standard (37.7°C), continuous high temperature (38.
View Article and Find Full Text PDF