Publications by authors named "Fernando Fermoso"

Microbial induced carbonate precipitation (MICP) shows great potential for metals recovery from secondary sources, which is vital for circular economy. This study explores the feasibility of using Sporosarcina pasteurii for MICP to recover copper (Cu) and zinc (Zn) from acidogenic anaerobic digestates at laboratory scale. Pre-cultured S.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how trace metals (TMs) can enhance the performance of anaerobic digestion (AD) to increase methane production through various dosing strategies.
  • The researchers used a model-based approach to evaluate different dosing methods, including continuous, preloading, pulse dosing, and in-situ loading.
  • The findings highlight that repeated pulse dosing at low concentrations (specifically, 5 µM every 5 days) optimally maximizes methane yield while minimizing metal loss, with the ideal dosing form varying based on reactor setup.
View Article and Find Full Text PDF

This study proposes an evaluation of the Diffusive Gradients in Thin films (DGT) technique to assess the labile fraction of trace metals and metalloids in anaerobic digestates. Experiments were performed in presence and absence of air to determine whether maintaining anaerobic conditions is mandatory during DGT deployments. A theoretically expected linear accumulation profile was observed for Fe, Mn, Ni, Mo, and As(III) in a manure-derived digestate and for Mn in distillery waste-derived digestate, whereas Al and Cu were detected without a consistent trend over time.

View Article and Find Full Text PDF

The objective of this study is to assess the inhibitory effects of an aqueous extract from olive oil mill waste (alperujo) on the growth of a lactic acid bacteria (LAB) cocktail consisting of various strains of Lactiplantibacillus pentosus and Lactiplantibacillus plantarum species. For this purpose, response surface methodology was employed using two independent variables (pH levels 3.5-5.

View Article and Find Full Text PDF

Strawberry extrudate (SE) is an underused by-product from strawberry industry. Recovery of the phenolic compounds present in SE would represent a very interesting valorisation option. Two main challenges need to be solved, firstly, the solubilisation and recovery of the phenolic compounds contained in SE, and, after that, the stabilisation of the resulted de-phenolized SE.

View Article and Find Full Text PDF

Dosing trace metals into anaerobic digestors is proven to improve biogas production rate and yield by stimulating microorganisms involved in the metabolic pathways. Trace metal effects are governed by metal speciation and bioavailability. Though chemical equilibrium speciation models are well-established and widely used to understand metal speciation, the development of kinetic models considering biological and physicochemical processes has recently gained attention.

View Article and Find Full Text PDF

Harnessing microbial capabilities for metal recovery from secondary waste sources is an eco-friendly and sustainable approach for the management of metal-containing wastes. Soluble microbial products (SMP) and extracellular polymeric substances (EPS) are the two main groups of extracellular compounds produced by microorganisms in response to metal stress that are of great importance for remediation and recovery of metals. These include various high-, and low, molecular weight components, which serve various functional and structural roles.

View Article and Find Full Text PDF

In recent years, there has been an increasing concern related to the contamination of aqueous ecosystems by heavy metals, highlighting the need to improve the current techniques for remediation. This work intends to address the problem of removing heavy metals from waterbodies by combining two complementary methodologies: adsorption to a copolymer synthesized by inverse vulcanization of sulfur and vegetable oils and phytoremediation by the microalga Chlorella sorokiniana to enhance the metal adsorption. After studying the tolerance and growth of Chlorella sorokiniana in the presence of the copolymer, the adsorption of highly concentrated Cd (50 mg L) by the copolymer and microalgae on their own and the combined immobilized system (AlgaPol) was compared.

View Article and Find Full Text PDF

According to recent studies, the anaerobic digestion of strawberry extrudate is a promising option with potential in the berry industry biorefinery. However, the lack and/or unbalance of concentrations of metals in some agro-industrial residues could hamper methane production during the anaerobic digestion of these kinds of wastes. In this study, a fractional factorial design was applied to screen the supplementation requirements regarding six metals (Co, Ni, Fe, Cu, Mn, and Zn) for methane production from strawberry extrudate (SE).

View Article and Find Full Text PDF

Microalgae are being proposed as excellent substrates for different biorefinery processes. Anaerobic digestion process of microalgae is one of these interesting processes but has some limitations in deleting cell walls. For this reason, many studies proposed different types of pre-treatments, entailing energy, operation, and investment costs.

View Article and Find Full Text PDF

The relationships between extracellular polymeric substances (EPS), soluble microbial product production, metal solubility, and methanogenic activity were investigated. The individual, and joint, toxic effects of nickel and cobalt on methanogenic consortia fed with glucose as model substrate were studied using biomethane potential assays. Cobalt was found to be less toxic to methanogens than nickel at each concentration tested, and the combined effects of Ni and Co on methane production in the bimetal experiment was higher than the sum of the effects of each metal alone.

View Article and Find Full Text PDF

Mechanical treatments can be simple and feasible methods for enhancing the anaerobic digestion of lignocellulosic substrates. This work aims to relate the direct effect of five different mechanical treatments, i.e.

View Article and Find Full Text PDF

Methanogenesis involves several enzymes with trace metal components that catalyze major metabolic pathways and, therefore, requires a sufficient supply of micronutrients such as iron, nickel or cobalt. The statistically-based Plackett-Burman experimental design was adopted in this study to identify which trace metal have a statistically significant effect on the maximum methane production from domestic sewage. The addition of Barium (Ba), Cobalt (Co), Copper (Cu), Iron (Fe), Manganese (Mn), Nickel (Ni) and Selenium (Se) was tested in batch reactors using domestic sewage as the substrate and sewage sludge as the inoculum.

View Article and Find Full Text PDF

The production of strawberry concentrate produces a side stream after extrusion that is commonly landfilled. This strawberry extrudate (SE), of lignocellulosic character, contains valuable bioactive compounds such as sugars and phenols. Thermal treatments, such as steam explosion, are currently used for the valorisation of agricultural lignocellulosic wastes due to their ability to impact the structure of the lignocellulose and hemicellulose present in these wastes, favouring the disruption of fibrous material.

View Article and Find Full Text PDF

The olive oil production is an important industrial sector in many Mediterranean areas, but it is currently struggled by the necessity of a proper valorisation of the olive mill solid waste or alperujo. The alperujo is the main by-product generated during the two-phase olive oil extraction, accounting for up to 80% of the initial olive mass. The alperujo is a source of valuable compounds, such as the pomace olive oil or highly interesting phenolic compounds.

View Article and Find Full Text PDF

This study was on the comparison of hydrothermal treatments at 170 °C (steam injection) and 220 °C (steam explosion) to solubilize the organic matter contained in residual strawberry extrudate, focusing on phenolic compounds that were susceptible to be extracted and on sugars. After the extraction step, the remaining strawberry extrudate phases were subjected to anaerobic digestion to generate biogas that would compensate the energy requirements of the suggested hydrothermal treatments and to stabilize the remaining waste. Hydrothermal treatment at 220 °C allowed the recovery of 2053 mg of gallic acid eq.

View Article and Find Full Text PDF

The aim of the present work was to evaluate the effects of a thermal pre-treatment of olive mill solid waste (OMSW) and phenol extraction process on the semi-continuous anaerobic digestion of this pre-treated waste during a prolonged operational period (275 days) in order to assess the organic loading rates (OLR) of 1 ad 2 g Volatile Solids (VS)/(L·d). The anaerobic digestion of thermally pre-treated and de-phenolized OMSW was stable at an OLR of 1 g VS/(L·d), which permitted a specific production rate of 172 ± 60 mL CH/(g VS·d). However, the system was not able to operate at an OLR of 2 g VS/(L·d), which resulted in the total failure of the process.

View Article and Find Full Text PDF

This work aims to compare the use of olive mill solid waste as substrate in pH-controlled fermentation at acid (pH = 5), neutral (uncontrolled, pH ≈ 7) and alkaline (pH = 9) operating pH levels. The results obtained in this study indicate that operating pH strongly affected the anaerobic microorganisms and, hence, different target compounds could be obtained by adjusting the operating pH. Fermentation at neutral pH resulted in the conversion of 93.

View Article and Find Full Text PDF

The effect and the response of several trace elements (TE) addition to the anaerobic degradation of key compounds of lignocellulosic biomass were evaluated. Lignin, cellulose and xylose were selected as principal compounds of lignocellulosic biomass. Lignin degradation was only improved by the addition of 1000 mg Fe/L, which allowed an improvement on the methane yield coefficient of 28% compared to control.

View Article and Find Full Text PDF

In a society where the environmental conscience is gaining attention, it is necessary to evaluate the potential valorization options for agricultural biomass to create a change in the perception of the waste agricultural biomass from waste to resource. In that sense, the biorefinery approach has been proposed as the roadway to increase profit of the agricultural sector and, at the same time, ensure environmental sustainability. The biorefinery approach integrates biomass conversion processes to produce fuels, power, and chemicals from biomass.

View Article and Find Full Text PDF

A start-up of 4 MW agricultural biogas plant in Vučja vas, Slovenia, was monitored from 2011 to 2014. The start-up was carried out in 3 weeks with the intake of biomass from three operating full-scale 1-2 MW donor agricultural biogas plants. The samples were taken from donor digesters and from two serial digesters during the start-up over the course of 2.

View Article and Find Full Text PDF

A promising source of high added value compounds is the Olive Mill Solid Waste (OMSW). The aim of this research was to evaluate the viability of a biorefinery approach to valorize OMSW through the combination of steam explosion, phenols extraction, and anaerobic digestion. Steam explosion treatment increased the total phenol content in the steam exploited OMSW, which was twice than that the total phenol content in raw OMSW, although some undesirable compounds were also formed.

View Article and Find Full Text PDF

Community on-site separation of wastewater is a treatment approach that leads to more efficient processes. Black water has high organic matter content and can be a suitable feedstock for anaerobic treatment systems. Biological methane production (BMP) tests were conducted using Plackett-Burman design to screen the effects of adding Fe, Ni, Cu, Co, Mn, Ba and Se, with simulated black water (SBW) as the substrate.

View Article and Find Full Text PDF

The main objective of this study was to evaluate the suitability of Nannochloropsis gaditana to grow by sequential adaptation to TOPW (Table olive processing water) at increased substrate concentrations (10-80%). Sequential adaptation allows growing Nannochloropsis gaditana up to 80% TOPW, although the maximum microalgae biomass productions were achieved for percentages of 20-40%, i.e.

View Article and Find Full Text PDF