Secondary forests are increasing in the Brazilian Amazon and have been cited as an important mechanism for reducing net carbon emissions. However, our understanding of the contribution of secondary forests to the Amazonian carbon balance is incomplete, and it is unclear to what extent emissions from old-growth deforestation have been offset by secondary forest growth. Using MapBiomas 3.
View Article and Find Full Text PDFTropical forests hold 30% of Earth's terrestrial carbon and at least 60% of its terrestrial biodiversity, but forest loss and degradation are jeopardizing these ecosystems. Although the regrowth of secondary forests has the potential to offset some of the losses of carbon and biodiversity, it remains unclear if secondary regeneration will be affected by climate changes such as higher temperatures and more frequent extreme droughts. We used a data set of 10 repeated forest inventories spanning two decades (1999-2017) to investigate carbon and tree species recovery and how climate and landscape context influence carbon dynamics in an older secondary forest located in one of the oldest post-Columbian agricultural frontiers in the Brazilian Amazon.
View Article and Find Full Text PDFBackground: Brazilian Amazon forests contain a large stock of carbon that could be released into the atmosphere as a result of land use and cover change. To quantify the carbon stocks, Brazil has forest inventory plots from different sources, but they are unstandardized and not always available to the scientific community. Considering the Brazilian Amazon extension, the use of remote sensing, combined with forest inventory plots, is one of the best options to estimate forest aboveground biomass (AGB).
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2018
Drought-induced wildfires have increased in frequency and extent over the tropics. Yet, the long-term (greater than 10 years) responses of Amazonian lowland forests to fire disturbance are poorly known. To understand post-fire forest biomass dynamics, and to assess the time required for fire-affected forests to recover to pre-disturbance levels, we combined 16 single with 182 multiple forest census into a unique large-scale and long-term dataset across the Brazilian Amazonia.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
October 2018
Wildfires produce substantial CO emissions in the humid tropics during El Niño-mediated extreme droughts, and these emissions are expected to increase in coming decades. Immediate carbon emissions from uncontrolled wildfires in human-modified tropical forests can be considerable owing to high necromass fuel loads. Yet, data on necromass combustion during wildfires are severely lacking.
View Article and Find Full Text PDFTree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights.
View Article and Find Full Text PDFWe analysed the flora of 46 forest inventory plots (25 m x 100 m) in old growth forests from the Amazonian region to identify the role of environmental (topographic) and spatial variables (obtained using PCNM, Principal Coordinates of Neighbourhood Matrix analysis) for common and rare species. For the analyses, we used multiple partial regression to partition the specific effects of the topographic and spatial variables on the univariate data (standardised richness, total abundance and total biomass) and partial RDA (Redundancy Analysis) to partition these effects on composition (multivariate data) based on incidence, abundance and biomass. The different attributes (richness, abundance, biomass and composition based on incidence, abundance and biomass) used to study this metacommunity responded differently to environmental and spatial processes.
View Article and Find Full Text PDFForest inventory studies in the Amazon indicate a large terrestrial carbon sink. However, field plots may fail to represent forest mortality processes at landscape-scales of tropical forests. Here we characterize the frequency distribution of disturbance events in natural forests from 0.
View Article and Find Full Text PDFEcological studies in tropical forests have long been plagued by difficulties associated with sampling the crowns of large canopy trees and large inaccessible regions, such as the Amazon basin. Recent advances in remote sensing have overcome some of these obstacles, enabling progress towards tackling difficult ecological problems. Breakthroughs have helped transform the dialog between ecology and remote sensing, generating new regional perspectives on key environmental gradients and species assemblages with ecologically relevant measures such as canopy nutrient and moisture content, crown area, leaf-level drought responses, woody tissue and surface litter abundance, phenological patterns, and land-cover transitions.
View Article and Find Full Text PDF