Publications by authors named "Fernando Eduardo Padovan-Neto"

Objective: To compare the dopamine transporter (DAT) density with other risk factors for L-DOPA-induced dyskinesia (LID) in patients with Parkinson's disease (PD), with and without LID.

Materials And Methods: We evaluated 67 subjects: 44 patients with idiopathic PD of varying degrees of severity (PD group), and 23 healthy age-matched volunteers (control group). Among the 44 patients in the PD group, 29 were male and the following means were recorded at baseline: age, 59 ± 7 years; disease duration, 10 ± 6 years; Hoehn and Yahr (H&Y) stage, 2.

View Article and Find Full Text PDF

Motor symptoms of Parkinson's disease (PD)-bradykinesia, akinesia, and tremor at rest-are consequences of the neurodegeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and dopaminergic striatal deficit. Animal models have been widely used to simulate human pathology in the laboratory. Rodents are the most used animal models for PD due to their ease of handling and maintenance.

View Article and Find Full Text PDF

L-DOPA-induced dyskinesias (LIDs) refer to motor complications that arise from prolonged L-DOPA administration to patients with Parkinson's disease (PD). The most common pattern observed in the clinic is the peak-dose dyskinesia which consists of clinical manifestations of choreiform, dystonic, and ballistic movements. The 6-hydroxydopamine (6-OHDA) rat model of PD mimics several characteristics of LIDs.

View Article and Find Full Text PDF

The nitric oxide (NO) system has been proven to be a valuable modulator of L-DOPA-induced dyskinesia in Parkinsonian rodents. NO activates the enzyme soluble guanylyl cyclase and elicits the synthesis of the second-messenger cGMP. Although we have previously described the anti-dyskinetic potential of NO synthase inhibitors on L-DOPA-induced dyskinesia, the effect of soluble guanylyl cyclase inhibitors remains to be evaluated.

View Article and Find Full Text PDF

It is well known that nitric oxide (NO) interacts with dopamine (DA) within the striatal circuitry. The anti-dyskinetic properties of NO synthase (NOS) inhibitors demonstrate the importance of NO in L-3,4-dihydroxyphenylalanine (L-DOPA)-induced dyskinesia (LID). Here, we investigated the ability of a daily co-treatment of the preferential neuronal NOS (nNOS) inhibitor, 7-nitroindazole (7-NI, 30 mg/kg), with L-DOPA (30 mg/kg) to counteract LID in unilaterally 6-OHDA-lesioned rats.

View Article and Find Full Text PDF

Nitric oxide synthase inhibitors reduce L-3, (Del-Bel et al., Cell Mol Neurobiol 25(2):371-392, 2005) 4-dihydroxyphenylalanine (L-DOPA)-induced abnormal motor effects subsequent to depletion of dopaminergic neurons in rodents and non-human primates. The present study used quantitative high-performance liquid chromatography to analyze, for the first time, dopamine metabolism in striatum of rats in order to elucidate the mechanism of action of the nitric oxide synthase inhibitors.

View Article and Find Full Text PDF

Rodents with lesion of dopaminergic pathway when receiving repeated l-3,4-dihydroxiphenylalanine (l-DOPA) treatment develop abnormal involuntary movements called dyskinesia. We demonstrated that nitric oxide synthase (NOS) inhibitors mitigate l-DOPA-induced dyskinesia in rodents. The aim of the present study was to verify if the in vivo preferential neuronal NOS (nNOS) inhibitor 7-nitroindazole (7-NI) affect the expression of the transcription factor FosB/ΔFosB in the lesioned striatum, an indicator of neuronal activity associated with dyskinesia.

View Article and Find Full Text PDF

Inhibitors of neuronal and endothelial nitric oxide synthase decrease l-3,4-dihidroxifenilalanine (l-DOPA)-induced dyskinesias in rodents. The mechanism of nitric oxide inhibitor action is unknown. The aims of the present study were to investigate the decrease of l-DOPA-induced abnormal involuntary movements (AIMs) in 6-hydroxydopamine (6-OHDA)-lesioned rats by nitric oxide inhibitors following either acute or chronic treatment.

View Article and Find Full Text PDF

According to classical thinking about Parkinson's disease, loss of dopaminergic input from the substantia nigra pars compacta leads to overactivity and underactivity of the indirect and direct output pathways, respectively, in the basal ganglia. Administration of the dopamine precursor L-DOPA (l-3, 4-dihydroxyphenylalanine) is proposed to induce changes in the opposite directions. L-DOPA is the most used drug to treat Parkinson`s disease symptoms.

View Article and Find Full Text PDF