The development of efficient nanoscale photon absorbers, such as plasmonic or high-index dielectric nanostructures, allows the remotely controlled release of heat on the nanoscale using light. These photothermal nanomaterials have found applications in various research and technological fields, ranging from materials science to biology. However, measuring the nanoscale thermal fields remains an open challenge, hindering full comprehension and control of nanoscale photothermal phenomena.
View Article and Find Full Text PDFLocalized surface plasmons are lossy and generate heat. However, accurate measurement of the temperature of metallic nanoparticles under illumination remains an open challenge, creating difficulties in the interpretation of results across plasmonic applications. Particularly, there is a quest for understanding the role of temperature in plasmon-assisted catalysis.
View Article and Find Full Text PDFFluorescence Resonance Energy Transfer (FRET)-based approaches are unique tools for sensing the immediate surroundings and interactions of (bio)molecules. FRET imaging and Fluorescence Lifetime Imaging Microscopy (FLIM) enable the visualization of the spatial distribution of molecular interactions and functional states. However, conventional FLIM and FRET imaging provide average information over an ensemble of molecules within a diffraction-limited volume, which limits the spatial information, accuracy, and dynamic range of the observed signals.
View Article and Find Full Text PDFObtaining arrays of single nanoparticles with three-dimensional complex shapes is still an open challenge. Current nanolithography methods do not allow for the preparation of nanoparticles with complex features like nanostars. In this work, we investigate the optical printing of gold nanostars of different sizes as a function of laser wavelength and power.
View Article and Find Full Text PDFLocalization of single fluorescent molecules is key for physicochemical and biophysical measurements, such as single-molecule tracking and super-resolution imaging by single-molecule localization microscopy. Over the last two decades, several methods have been developed in which the position of a single emitter is interrogated with a sequence of spatially modulated patterns of light. Among them, the recent MINFLUX technique outstands for achieving a ∼10-fold improvement compared with wide-field camera-based single-molecule localization, reaching ∼1-2 nm localization precision at moderate photon counts.
View Article and Find Full Text PDFAn ideal nanofabrication method should allow the organization of nanoparticles and molecules with nanometric positional precision, stoichiometric control, and well-defined orientation. The DNA origami technique has evolved into a highly versatile bottom-up nanofabrication methodology that fulfils almost all of these features. It enables the nanometric positioning of molecules and nanoparticles with stoichiometric control, and even the orientation of asymmetrical nanoparticles along predefined directions.
View Article and Find Full Text PDFOptical antennas are nanostructures designed to manipulate light-matter interactions by interfacing propagating light with localized optical fields. In recent years, numerous devices have been realized to efficiently tailor the absorption and/or emission rates of fluorophores. By contrast, modifying the spatial characteristics of their radiation fields remains challenging.
View Article and Find Full Text PDFLocalization of single fluorescent emitters is key for physicochemical and biophysical measurements at the nanoscale and beyond ensemble averaging. Examples include single-molecule tracking and super-resolution imaging by single-molecule localization microscopy. Among the numerous localization methods available, MINFLUX outstands for achieving a ~10-fold improvement in resolution over wide-field camera-based approaches, reaching the molecular scale at moderate photon counts.
View Article and Find Full Text PDFUsing sequential excitation with a minimum of light to localize single fluorescent molecules represented a breakthrough because it delivers 1-2 nm precision with moderate photon counts, enabling tracking and super-resolution imaging with true molecular resolution. Expanding this concept to multi-photon regimes may be a useful complement to reach even higher localization precision and get deeper into biological specimens.
View Article and Find Full Text PDFSuper-resolution fluorescence microscopy and Förster Resonance Energy Transfer (FRET) form a well-established family of techniques that has provided unique tools to study the dynamic architecture and functionality of biological systems, as well as to investigate nanomaterials. In the last years, the integration of super-resolution methods with FRET measurements has generated advances in two fronts. On the one hand, FRET-based probes have enhanced super-resolution imaging.
View Article and Find Full Text PDFWe present a technique to determine the orientation of single fluorophores attached to DNA origami structures based on two measurements. First, the orientation of the absorption transition dipole of the molecule is determined through a polarization-resolved excitation measurement. Second, the orientation of the DNA origami structure is obtained from a DNA-PAINT nanoscopy measurement.
View Article and Find Full Text PDFFörster resonance energy transfer (FRET) imaging methods provide unique insight into the spatial distribution of energy transfer and (bio)molecular interaction events, though they deliver average information for an ensemble of events included in a diffraction-limited volume. Coupling super-resolution fluorescence microscopy and FRET has been a challenging and elusive task. Here, we present STED-FRET, a method of general applicability to obtain super-resolved energy transfer images.
View Article and Find Full Text PDFSingle-molecule localization microscopy enables far-field imaging with lateral resolution in the range of 10 to 20 nanometres, exploiting the fact that the centre position of a single-molecule's image can be determined with much higher accuracy than the size of that image itself. However, attaining the same level of resolution in the axial (third) dimension remains challenging. Here, we present Supercritical Illumination Microscopy Photometric z-Localization with Enhanced Resolution (SIMPLER), a photometric method to decode the axial position of single molecules in a total internal reflection fluorescence microscope.
View Article and Find Full Text PDFWe introduce p-MINFLUX, a new implementation of the highly photon-efficient single-molecule localization method with a simplified experimental setup and additional fluorescence lifetime information. In contrast to the original MINFLUX implementation, p-MINFLUX uses interleaved laser pulses to deliver the doughnut-shaped excitation foci at a maximum repetition rate. Using both static and dynamic DNA origami model systems, we demonstrate the performance of p-MINFLUX for single-molecule localization nanoscopy and tracking, respectively.
View Article and Find Full Text PDFSeveral fields of applications require a reliable characterization of the photothermal response and heat dissipation of nanoscopic systems, which remains a challenging task for both modeling and experimental measurements. Here, we present an implementation of anti-Stokes thermometry that enables the photothermal characterization of individual nanoparticles (NPs) from a single hyperspectral photoluminescence confocal image. The method is label-free, potentially applicable to any NP with detectable anti-Stokes emission, and does not require any prior information about the NP itself or the surrounding media.
View Article and Find Full Text PDFSingle Molecule Localization Microscopy (SMLM) currently attains a lateral resolution of around 10 nm approaching molecular size. Together with increasingly specific fluorescent labeling, it opens the possibility to quantitatively analyze molecular organization. When the labeling density is high enough, SMLM provides clear images of the molecular organization.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFFluorescent nanoscopy approaches have been used to characterize the periodic organization of actin, spectrin and associated proteins in neuronal axons and dendrites. This membrane-associated periodic skeleton (MPS) is conserved across animals, suggesting it is a fundamental component of neuronal extensions. The nanoscale architecture of the arrangement (190 nm) is below the resolution limit of conventional fluorescent microscopy.
View Article and Find Full Text PDFWe demonstrate the capability of DNA self-assembled optical antennas to direct the emission of an individual fluorophore, which is free to rotate. DNA origami is used to fabricate optical antennas composed of two colloidal gold nanoparticles separated by a predefined gap and to place a single Cy5 fluorophore near the gap center. Although the fluorophore is able to rotate, its excitation and far-field emission is mediated by the antenna, with the emission directionality following a dipolar pattern according to the antenna main resonant mode.
View Article and Find Full Text PDFEngineering oligomeric protein self-assembly is an attractive approach to fabricate nanostructures with well-defined geometries, stoichiometry and functions. The homodecamer Lumazine Synthase (BLS) is a highly stable and immunogenic protein nanoparticle (PNP). Here, we engineered the BLS protein scaffold to display two functions in spatially opposite regions of its structure yielding a Janus-like nanoparticle.
View Article and Find Full Text PDF