We have carried out a systematic investigation of the critical activation parameters (i.e., final temperature (673-1273 K), atmosphere (He vs.
View Article and Find Full Text PDFWe have investigated the gas-phase ( = 1 atm; = 373 K) hydrogenation of (tertiary alkynol) 2-methyl-3-butyn-2-ol (MBY) and (secondary) 3-butyn-2-ol (BY) over a series of carbon (C), non-reducible (AlO and MgO), and reducible (CeO and ZnO) supported monometallic [Pd (0.6-1.2% wt) and Zn (1% wt)] and bimetallic Pd-Zn (Pd:Zn mol ratio = 95:5, 70:30, and 30:70) catalysts synthesized by deposition-precipitation and colloidal deposition.
View Article and Find Full Text PDFWe have investigated the synthesis and application of Au-Cu/CeO₂ (Cu: Au = 2) in the continuous gas phase ( 1 atm; = 498 K) coupled hydrogenation of 5-hydroxymethyl-2-furaldehyde (HMF) with 2-butanol dehydrogenation. STEM-EDX analysis revealed a close surface proximity of both metals in Au-Cu/CeO₂ -TPR. XPS measurements suggest (support → metal) charge transfer to form Au and strong metal-support interactions to generate Cu⁰ and Cu⁺.
View Article and Find Full Text PDFAbstract: We have examined the role of support oxygen vacancies in the gas phase hydrogenation of furfural over Au/TiO and Au/CeO prepared by deposition-precipitation. Both catalysts exhibited a similar Au particle size distribution (1-6 nm) and mean (2.8-3.
View Article and Find Full Text PDFAbstract: The catalytic (Pd/AlO and Pd/C; mean Pd size 2.5-3.0 nm from (S)TEM analysis) synthesis of di-butylamine (DBA) and tri-butylamine (TBA) from mono-butylamine (MBA) and DBA, respectively, in continuous gas phase operation is demonstrated.
View Article and Find Full Text PDFThe chemoselective continuous gas phase (T = 573 K; P = 1 atm) hydrogenation of nitroarenes (p-chloronitrobenzene (p-CNB) and m-dinitrobenzene (m-DNB)) has been investigated over a series of oxide (Al2O3 and TiO2) supported Au and Ni-Au (1 : 10 mol ratio; 0.1-1 mol% Au) catalysts. Monometallic supported Au with mean particle size 3-9 nm promoted exclusive formation of p-chloroaniline (p-CAN) and m-nitroaniline (m-NAN).
View Article and Find Full Text PDFThe relationship between catalytic response and properties of the active phase is difficult to establish in classical heterogeneous catalysis due to the number of variables that can affect catalytic performance. Ultrahigh-vacuum surface methods applied to model catalyst surfaces are useful tools to assess fundamental issues related to catalytic processes but they are limited by the significant differences with catalysts in the working state. In an attempt to overcome this issue, (unsupported) nano-metal systems with controlled size and shape have been synthesized and tested in selective alkyne hydrogenation.
View Article and Find Full Text PDFCatalytic hydrodechlorination (HDC) is an effective means of detoxifying chlorinated waste. Gold nanoparticles supported on Fe(3)O(4) have been tested in the gas phase (1 atm, 423 K) HDC of 2,4-dichlorophenol. Two 1% w/w supported gold catalysts have been prepared by: (i) stepwise deposition of Au on α-Fe(2)O(3) with subsequent temperature-programmed reduction at 673 K (Au/Fe(3)O(4)-step); (ii) direct deposition of Au on Fe(3)O(4) (Au/Fe(3)O(4)-dir).
View Article and Find Full Text PDFThe gas-phase continuous hydrogenation of p-chloronitrobenzene (p-CNB) over 1 mol% Au/TiO2 and Au/Al2O3 was compared for the first time. Both catalysts exhibit 100% selectivity in terms of -NO2 group reduction, resulting in the sole formation of p-chloroaniline (p-CAN). Au/TiO2 exhibited a narrower particle size (1-10 nm) distribution than Au/Al2O3 (1-20 nm) and a smaller surface-area-weighted mean Au size (6 nm versus 9 nm).
View Article and Find Full Text PDF