Publications by authors named "Fernando Calvo"

Neoplastic progression involves complex interactions between cancer cells and the surrounding stromal milieu, fostering microenvironments that crucially drive tumor progression and dissemination. Of these stromal constituents, cancer-associated fibroblasts (CAFs) emerge as predominant inhabitants within the tumor microenvironment (TME), actively shaping multiple facets of tumorigenesis, including cancer cell proliferation, invasiveness, and immune evasion. Notably, CAFs also orchestrate the production of pro-angiogenic factors, fueling neovascularization to sustain the metabolic demands of proliferating cancer cells.

View Article and Find Full Text PDF

The remarkable contractility and force generation ability exhibited by cancer cells empower them to overcome the resistance and steric hindrance presented by a three-dimensional, interconnected matrix. Cancer cells disseminate by actively remodelling and deforming their extracellular matrix (ECM). The process of tumour growth and its ECM remodelling have been extensively studied, but the effect of the cellular tumour microenvironment (TME) has been ignored in most studies that investigated tumour-cell-mediated ECM deformations and realignment.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) has a very poor prognosis because of its high propensity to metastasize and its immunosuppressive microenvironment. Using a panel of pancreatic cancer cell lines, three-dimensional (3D) invasion systems, microarray gene signatures, microfluidic devices, mouse models, and intravital imaging, we demonstrate that ROCK-Myosin II activity in PDAC cells supports a transcriptional program conferring amoeboid invasive and immunosuppressive traits and in vivo metastatic abilities. Moreover, we find that immune checkpoint CD73 is highly expressed in amoeboid PDAC cells and drives their invasive, metastatic, and immunomodulatory traits.

View Article and Find Full Text PDF

Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization.

View Article and Find Full Text PDF

Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation.

View Article and Find Full Text PDF

Head and neck cancers (HNC) are a diverse group of aggressive malignancies with high morbidity and mortality, leading to almost half-million deaths annually worldwide. A better understanding of the molecular processes governing tumor formation and progression is crucial to improve current diagnostic and prognostic tools as well as to develop more personalized treatment strategies. Tumors are highly complex and heterogeneous structures in which growth and dissemination is not only governed by the cancer cells intrinsic mechanisms, but also by the surrounding tumor microenvironment (TME).

View Article and Find Full Text PDF

Background: Cancer-associated fibroblasts (CAFs) are major players in tumor-stroma communication, and participate in several cancer hallmarks to drive tumor progression and metastatic dissemination. This study investigates the driving effects of tumor-secreted factors on CAF biology, with the ultimate goal of identifying effective therapeutic targets/strategies for head and neck squamous cell carcinomas (HNSCC).

Methods: Functionally, conditioned media (CM) from different HNSCC-derived cell lines and normal keratinocytes (Kc) were tested on the growth and invasion of populations of primary CAFs and normal fibroblasts (NFs) using 3D invasion assays in collagen matrices.

View Article and Find Full Text PDF

Dapagliflozin is a selective sodium-glucose cotransporter 2 inhibitor (SGLT2i) indicated for the treatment of type 2 diabetes mellitus (T2DM), heart failure (HF) with reduced ejection fraction (EF) and chronic kidney disease (CKD). In monotherapy or as an additive therapy, dapagliflozin aids glycaemic control, is associated with reductions in blood pressure and weight, and promotes a favourable lipid profile. In this review, we address the impact of dapagliflozin on cardiovascular risk factors and common microangiopathic complications such as kidney disease and retinopathy in patients with T2DM.

View Article and Find Full Text PDF

The tumor microenvironment (TME) is reprogrammed by cancer cells and participates in all stages of tumor progression. The contribution of stromal cells to the reprogramming of the TME is not well understood. Here, we provide evidence of the role of the cytokine oncostatin M (OSM) as central node for multicellular interactions between immune and nonimmune stromal cells and the epithelial cancer cell compartment.

View Article and Find Full Text PDF

This work aims to describe how EHRs have been used to meet the needs of healthcare providers and researchers in a 1,300-beds tertiary Hospital during COVID-19 pandemic. For this purpose, essential clinical concepts were identified and standardized with LOINC and SNOMED CT. After that, these concepts were implemented in EHR systems and based on them, data tools, such as clinical alerts, dynamic patient lists and a clinical follow-up dashboard, were developed for healthcare support.

View Article and Find Full Text PDF

Fast amoeboid migration is critical for developmental processes and can be hijacked by cancer cells to enhance metastatic dissemination. This migratory behavior is tightly controlled by high levels of actomyosin contractility, but how it is coupled to other cytoskeletal components is poorly understood. Septins are increasingly recognized as novel cytoskeletal components, but details on their regulation and contribution to migration are lacking.

View Article and Find Full Text PDF

SWATH-mass spectrometry (MS) enables accurate and reproducible proteomic profiling in multiple model organisms including the mouse. Here, we present a comprehensive mouse reference spectral library (MouseRefSWATH) that permits quantification of up to 10,597 proteins (62.2% of the mouse proteome) by SWATH-MS.

View Article and Find Full Text PDF

Despite biomarker stratification, the anti-EGFR antibody cetuximab is only effective against a subgroup of colorectal cancers (CRCs). This genomic and transcriptomic analysis of the cetuximab resistance landscape in 35 RAS wild-type CRCs identified associations of NF1 and non-canonical RAS/RAF aberrations with primary resistance and validated transcriptomic CRC subtypes as non-genetic predictors of benefit. Sixty-four percent of biopsies with acquired resistance harbored no genetic resistance drivers.

View Article and Find Full Text PDF

Approximately 30% of ERα breast cancer patients relapse with metastatic disease following adjuvant endocrine therapies. The connection between acquisition of drug resistance and invasive potential is poorly understood. In this study, we demonstrate that the type II keratin topological associating domain undergoes epigenetic reprogramming in aromatase inhibitors (AI)-resistant cells, leading to Keratin-80 (KRT80) upregulation.

View Article and Find Full Text PDF

Modern omics technologies allow us to obtain global information on different types of biological networks. However, integrating these different types of analyses into a coherent framework for a comprehensive biological interpretation remains challenging. Here, we present a conceptual framework that integrates protein interaction, phosphoproteomics, and transcriptomics data.

View Article and Find Full Text PDF

Aggressive behaviours of solid tumours are highly influenced by the tumour microenvironment. Multiple signalling pathways can affect the normal function of stromal fibroblasts in tumours, but how these events are coordinated to generate tumour-promoting cancer-associated fibroblasts (CAFs) is not well understood. Here we show that stromal expression of Dickkopf-3 (DKK3) is associated with aggressive breast, colorectal and ovarian cancers.

View Article and Find Full Text PDF

Less than 15% of hypertension cases in children are secondary to a primary hyperaldosteronism. This is idiopathic in 60% of the cases, secondary to a unilateral adenoma in 30% and 10% remaining by primary adrenal hyperplasia, familial hyperaldosteronism, ectopic aldosterone production or adrenocortical carcinoma.To date, four types of familial hyperaldosteronism (FH I to FH IV) have been reported.

View Article and Find Full Text PDF

This study investigates for the first time the crosstalk between stromal fibroblasts and cancer stem cell (CSC) biology in head and neck squamous cell carcinomas (HNSCC), with the ultimate goal of identifying effective therapeutic targets. The effects of conditioned media from cancer-associated fibroblasts (CAFs) and normal fibroblasts (NFs) on the CSC phenotype were assessed by combining functional and expression analyses in HNSCC-derived cell lines. Further characterization of CAFs and NFs secretomes by mass spectrometry was followed by pharmacologic target inhibition.

View Article and Find Full Text PDF

Cells exist in dynamic three-dimensional environments where they experience variable mechanical forces due to their interaction with the extracellular matrix, neighbouring cells and physical stresses. The ability to constantly and rapidly alter cellular behaviour in response to the mechanical environment is therefore crucial for cell viability, tissue development and homeostasis. Mechanotransduction is the process whereby cells translate mechanical inputs into biochemical signals.

View Article and Find Full Text PDF

Ras GTPases convey signals from different types of membranes. At these locations, different Ras isoforms, interactors and regulators generate different biochemical signals and biological outputs. The study of Ras localisation-specific signal transduction networks has been hampered by our inability to specifically activate each of these Ras pools.

View Article and Find Full Text PDF

Acromegaly is a rare disease with nonspecific symptoms with acral enlargement being almost universally present at diagnosis. The estimated prevalence is 40-125 cases/million but targeted universal screening studies have found a higher prevalence (about 10 fold). The aim of the ACROSAHS study was to investigate the prevalence of acromegaly and acromegaly comorbidities in patients with sleep apnea symptoms and acral enlargement.

View Article and Find Full Text PDF

Metastasis is the main cause of cancer patient mortality. Local tumor invasion is a key step in metastatic dissemination whereby cancer cells dislodge from primary tumors, migrate through the peritumoral stroma and reach the circulation. This is a highly dynamic process occurring in three dimensions that involves interactions between tumor, stromal cells, and the extracellular matrix.

View Article and Find Full Text PDF

Despite being discovered more than 15 years ago, the Borg (binder of Rho GTPases) family of Cdc42 effector proteins (Cdc42EP1-5) remains largely uncharacterised and relatively little is known about their structure, regulation and role in development and disease. Recent studies are starting to unravel some of the key functional and mechanistic aspects of the Borg proteins, including their role in cytoskeletal remodelling and signalling. In addition, the participation of Borg proteins in important cellular processes such as cell shape, directed migration and differentiation is slowly emerging, directly linking Borgs with important physiological and pathological processes such as angiogenesis, neurotransmission and cancer-associated desmoplasia.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session0qrf7frv0mo6cc4dm7ad04kj3i5gd5ah): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once