Publications by authors named "Fernando Bandeira Sulczewski"

Dendritic cells are central to the development of immunity, as they are specialized in initiating antigen-specific immune responses. In this review, we briefly present the existing knowledge on dendritic cell biology and how their division in different dendritic cell subsets may impact the development of immune responses. In addition, we explore the use of chimeric monoclonal antibodies that bind to dendritic cell surface receptors, with an emphasis on the C-type lectin family of endocytic receptors, to deliver antigens directly to these cells.

View Article and Find Full Text PDF

High-dimensional approaches have revealed heterogeneity amongst dendritic cells (DCs), including a population of transitional DCs (tDCs) in mice and humans. However, the origin and relationship of tDCs to other DC subsets has been unclear. Here we show that tDCs are distinct from other well-characterized DCs and conventional DC precursors (pre-cDCs).

View Article and Find Full Text PDF

Conventional dendritic cells (cDC) are a group of antigen-presenting cells specialized in priming T cell responses. In mice, splenic cDC are divided into conventional type 1 DC (cDC1) and conventional type 2 (cDC2). cDC1 are specialized to prime the Th1 CD4 T cell response, while cDC2 are mainly associated with the induction of follicular helper T cell responses to support germinal center formation.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs) are antigen-presenting cells specialized in naïve T cell priming. Mice splenic cDCs are classified as cDC1s and cDC2s, and their main functions have been elucidated in the last decade. While cDC1s are specialized in priming type 1 helper T cells (T1) and in cross presentation, cDC2s prime T follicular helper (T) cells that stimulate germinal center (GC) formation, plasma cell differentiation and antibody production.

View Article and Find Full Text PDF

Although the influence of sleep quality on the immune system is well documented, the mechanisms behind its impact on natural host immunity remain unclear. Meanwhile, it has been suggested that neuroimmune interactions play an important role in this phenomenon. To evaluate the impact of stress-induced sleep disturbance on host immunity, we used a murine model of rapid eye movement sleep deprivation (RSD) integrated with a model of malaria blood-stage infection.

View Article and Find Full Text PDF

Conventional dendritic cells (cDCs) are specialized in antigen presentation. In the mouse spleen, cDCs are classified in cDC1s and cDC2s, and express DEC205 and DCIR2 endocytic receptors, respectively. Monoclonal antibodies (mAbs) αDEC205 (αDEC) and αDCIR2 have been fused to different antigens to deliver them to cDC1s or cDC2s.

View Article and Find Full Text PDF

Dengue fever has become a global threat, causing millions of infections every year. An effective vaccine against all four serotypes of dengue virus (DENV) has not been developed yet. Among the different vaccination strategies available today, DNA vaccines are safe and practical, but currently induce relatively weak immune responses in humans.

View Article and Find Full Text PDF

Dendritic cells (DCs) are antigen-presenting cells essential for the induction of adaptive immune responses. Their unprecedented ability to present antigens to T cells has made them excellent targets for vaccine development. In the last years, a new technology based on antigen delivery directly to different DC subsets through the use of hybrid monoclonal antibodies (mAbs) to DC surface receptors fused to antigens of interest opened new perspectives for the induction of robust immune responses.

View Article and Find Full Text PDF