Publications by authors named "Fernando Arana-Ceballos"

Article Synopsis
  • - The study focuses on identifying genetic factors that enhance frost tolerance (FroT) in winter wheat, which is crucial for improving crop yields in areas prone to heavy frost.
  • - Researchers conducted genome-wide association studies (GWAS) on 276 winter wheat genotypes, leading to the identification of 53 significant markers linked to FroT across 23 QTL regions on 11 chromosomes.
  • - Importantly, the study discovered eight previously unknown FroT QTLs, providing new insights into the genetic mechanisms of frost resistance in wheat and potential strategies for breeding frost-tolerant varieties.
View Article and Find Full Text PDF

Background: Understanding the genetic basis of frost tolerance (FT) in wheat (Triticum aestivum L.) is essential for preventing yield losses caused by frost due to cellular damage, dehydration and reduced metabolism. FT is a complex trait regulated by a number of genes and several gene families.

View Article and Find Full Text PDF

With the implementation of novel automated, high throughput methods and facilities in the last years, plant phenomics has developed into a highly interdisciplinary research domain integrating biology, engineering and bioinformatics. Here we present a dataset of a non-invasive high throughput plant phenotyping experiment, which uses image- and image analysis- based approaches to monitor the growth and development of 484 Arabidopsis thaliana plants (thale cress). The result is a comprehensive dataset of images and extracted phenotypical features.

View Article and Find Full Text PDF

Organisms adopt a wide range of strategies to adapt to change. Gene silencing describes the ability of organisms to modulate the expression of susceptible genes at certain times at the transcriptional or the translational level. In all known eukaryotic organisms 21-nt long short interfering RNAs (siRNAs) are the effector molecules of post-transcriptional gene silencing (PTGS), while 24-nt long siRNAs are involved in PTGS in plants.

View Article and Find Full Text PDF

Detailed and standardized protocols for plant cultivation in environmentally controlled conditions are an essential prerequisite to conduct reproducible experiments with precisely defined treatments. Setting up appropriate and well defined experimental procedures is thus crucial for the generation of solid evidence and indispensable for successful plant research. Non-invasive and high throughput (HT) phenotyping technologies offer the opportunity to monitor and quantify performance dynamics of several hundreds of plants at a time.

View Article and Find Full Text PDF

Diacylglycerol kinase (DGK) regulates the level of the second messenger diacylglycerol and produces phosphatidic acid (PA), another signaling molecule. The Arabidopsis thaliana genome encodes seven putative diacylglycerol kinase isozymes (named AtDGK1 to -7), structurally falling into three major clusters. So far, enzymatic activity has not been reported for any plant Cluster II DGK.

View Article and Find Full Text PDF