Pharmaceutics
August 2024
Glioblastoma multiforme (GBM) is the most severe form of brain cancer in adults, characterized by its complex vascular network that contributes to resistance to conventional therapies. Thermal therapies, such as magnetic hyperthermia (MHT), emerge as promising alternatives, using heat to selectively target tumor cells while minimizing damage to healthy tissues. The organ-on-a-chip can replicate this complex vascular network of GBM, allowing for detailed investigations of heat dissipation in MHT, while computational simulations refine treatment parameters.
View Article and Find Full Text PDFObjective: To evaluate the in vitro and in vivo toxicities of polyethylene glycol-coated gold nanoparticles synthesized using a one-step process.
Methods: Gold nanoparticles were prepared via a co-precipitation method using polyethylene glycol, and the synthesis product was characterized. For the in vitro evaluation, a flow cytometry analysis with Annexin V and iodide propidium staining was used to assess cytotoxicity in MG-63 cells labeled with 10, 50, and 100µg/mL of nanoparticle concentration.
Int J Nanomedicine
April 2024
Introduction: Inflammatory bowel diseases (IBDs) disrupt the intestinal epithelium, leading to severe chronic inflammation. Current therapies cause adverse effects and are expensive, invasive, and ineffective for most patients. Annexin A1 (AnxA1) is a pivotal endogenous anti-inflammatory and tissue repair protein in IBD.
View Article and Find Full Text PDFSelecting a method of euthanasia is an important step in designing research studies that use animals; euthanasia methods must be humane, cause minimal pain and suffering to the animal, and preserve the tissue architecture of the organs of interest. In this study, we evaluated the histomorphology of the internal organs (lung, spleen, heart, kidney, liver, brain, and adrenal gland) of rats submitted to five different methods of euthanasia, with the goal of determining which protocol caused the least alteration of histomorphology. Twenty adult Wistar Han rats () were divided into 5 groups of 4 rats each (2 females and 2 males) and were euthanized by CO₂ or isoflurane inhalation, sodium thiopental or xylazine plus ketamine overdose, or decapitation.
View Article and Find Full Text PDFBackground: Induced pluripotent stem cells (iPSCs) show great ability to differentiate into any tissue, making them attractive candidates for pathophysiological investigations. The rise of organ-on-a-chip technology in the past century has introduced a novel way to make cell cultures that more closely resemble their environments, both structural and functionally. The literature still lacks consensus on the best conditions to mimic the blood-brain barrier (BBB) for drug screening and other personalized therapies.
View Article and Find Full Text PDFBackground: Bone marrow transplantation (BMT) can be applied to both hematopoietic and nonhematopoietic diseases; nonetheless, it still comes with a number of challenges and limitations that contribute to treatment failure. Bearing this in mind, a possible way to increase the success rate of BMT would be cotransplantation of mesenchymal stem cells (MSCs) and hematopoietic stem cells (HSCs) to improve the bone marrow niche and secrete molecules that enhance the hematopoietic engraftment.
Aim: To analyze HSC and MSC characteristics and their interactions through cotransplantation in murine models.
The objective of this study was to highlight the global scientific effort to fight the SARS-CoV-2, addressing the preliminary results of passive immunization through convalescent plasma. We performed a search at the major databases of interventional clinical trial protocols about the transfusion of convalescent plasma in patients with COVID-19, as well as, published articles (n≥25), using the following search strategy: [(COVID-19 OR SARS-CoV-2 OR nCoV-2019) AND (Convalescent plasma OR Plasma exchange) AND (Treatment OR Therapy)]. A total of 24 interventional clinical trial protocols (advanced in phases II-III, III, and IV) were included in this review, as well as three studies that had enough outcomes to evaluate the efficacy of convalescent plasma therapy for patients with COVID-19.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most aggressive tumor type whose resistance to conventional treatment is mediated, in part, by the angiogenic process. New treatments involving the application of nanoformulations composed of encapsulated drugs coupled to peptide motifs that direct drugs to specific targets triggered in angiogenesis have been developed to reach and modulate different phases of this process. We performed a systematic review with the search criterion (Glioblastoma OR Glioma) AND (Therapy OR Therapeutic) AND (Nanoparticle) AND (Antiangiogenic OR Angiogenesis OR Anti-angiogenic) in Pubmed, Scopus, and Cochrane databases, in which 312 articles were identified; of these, only 27 articles were included after selection and analysis of eligibility according to the inclusion and exclusion criteria.
View Article and Find Full Text PDFBackground: Stroke is the second leading cause of death worldwide. There is a real need to develop treatment strategies for reducing neurological deficits in stroke survivors, and stem cell (SC) therapeutics appear to be a promising alternative for stroke therapy that can be used in combination with approved thrombolytic or thrombectomy approaches. However, the efficacy of SC therapy depends on the SC homing ability and engraftment into the injury site over a long period of time.
View Article and Find Full Text PDFObjective: To evaluate the magnetic hyperthermia therapy in glioblastoma tumor-on-a-Chip model using a microfluidics device.
Methods: The magnetic nanoparticles coated with aminosilane were used for the therapy of magnetic hyperthermia, being evaluated the specific absorption rate of the magnetic nanoparticles at 300 Gauss and 305kHz. A preculture of C6 cells was performed before the 3D cells culture on the chip.
Background: Mesenchymal stem cells (MSCs) have been widely tested for their therapeutic efficacy in the ischemic brain and have been shown to provide several benefits. A major obstacle to the clinical translation of these therapies has been the inability to noninvasively monitor the best route, cell doses, and collateral effects while ensuring the survival and effective biological functioning of the transplanted stem cells. Technological advances in multimodal imaging have allowed monitoring of the biodistribution and viability of transplanted stem cells due to a combination of imaging technologies associated with multimodal nanoparticles (MNPs) using new labels and covers to achieve low toxicity and longtime residence in cells.
View Article and Find Full Text PDF