Publications by authors named "Fernando Amaya"

Type VI Secretion Systems (T6SS), widely distributed in Gram-negative bacteria, contribute to interbacterial competition and pathogenesis through the translocation of effector proteins to target cells. harbor 5 pathogenicity islands encoding T6SS (SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22), in which a limited number of effector proteins have been identified. Previous analyses by our group focused on the identification of candidate T6SS effectors and cognate immunity proteins in genomes deposited in public databases.

View Article and Find Full Text PDF

The type VI secretion system (T6SS) is a contact-dependent contractile multiprotein apparatus widely distributed in Gram-negative bacteria. These systems can deliver different effector proteins into target bacterial and/or eukaryotic cells, contributing to the environmental fitness and virulence of many bacterial pathogens. harbors five different T6SSs encoded in different genomic islands.

View Article and Find Full Text PDF

genus harbors five Type VI Secretion System (T6SS) gene clusters. The T6SS encoded in SPI-6 (T6SS) contributes to Typhimurium colonization of chickens and mice, while the T6SS encoded in SPI-19 (T6SS) of Gallinarum contributes to chicken colonization. Interestingly, the T6SS of Gallinarum complemented the defect in chicken colonization of a Typhimurium strain that lacks the T6SS, suggesting that both T6SSs are interchangeable.

View Article and Find Full Text PDF

The Type VI Secretion System (T6SS) is a multiprotein device that has emerged as an important fitness and virulence factor for many Gram-negative bacteria through the injection of effector proteins into prokaryotic or eukaryotic cells a contractile mechanism. While some effector proteins specifically target bacterial or eukaryotic cells, others can target both types of cells (trans-kingdom effectors). In , five T6SS gene clusters have been identified within pathogenicity islands SPI-6, SPI-19, SPI-20, SPI-21, and SPI-22, which are differentially distributed among serotypes.

View Article and Find Full Text PDF

The type III secretion systems (T3SS) encoded in pathogenicity islands SPI-1 and SPI-2 are key virulence factors of . These systems translocate proteins known as effectors into eukaryotic cells during infection. To characterize the functionality of T3SS effectors, gene fusions to the reporter of are often used.

View Article and Find Full Text PDF

resists extremely high concentrations of copper. Strain ATCC 53993 is much more resistant to the metal compared with strain ATCC 23270, possibly due to the presence of a genomic island in the former one. The global response of strain ATCC 53993 to copper was analyzed using iTRAQ (isobaric tag for relative and absolute quantitation) quantitative proteomics.

View Article and Find Full Text PDF

Lipid A is the bioactive component of lipopolysaccharide, and presents a dynamic structure that undergoes modifications in response to environmental signals. Many of these structural modifications influence virulence. This is the case of lipid A hydroxylation, a modification catalyzed by the dioxygenase LpxO.

View Article and Find Full Text PDF

Background: Vaginal infections are a frequent cause for consultation, but their prevalence and etiology vary in different populations.

Objectives: To determine the prevalence and etiologies of vaginal infection in women attending a family health center in the Metropolitan Region of Chile.

Methods: The microbiological diagnosis was made by wet mount and Gram stain.

View Article and Find Full Text PDF