Publications by authors named "Fernando Alvarez-Alfageme"

Since 1998, genetically engineered maize varieties expressing the insecticidal Cry1Ab protein (i.e. event MON 810) have been grown in the European Union (EU), mainly in Spain.

View Article and Find Full Text PDF

Genetically modified plants (GMPs) intended for market release can be designed to induce "gene silencing" through RNA interference (RNAi). The European Food Safety Authority (EFSA) and other international risk assessment bodies/regulatory agencies have taken several actions to determine whether the existing risk assessment approaches for GMPs are appropriate for the risk assessment of RNAi-based GMPs or require complementary or alternative approaches. To our knowledge, at the international level, no dedicated guidelines have been developed for the risk assessment and regulation of RNAi-based GMPs, confirming that existing science-based risk assessment approaches for GMPs are generally considered suitable for RNAi-based GMPs.

View Article and Find Full Text PDF

Background: Legumes have been genetically engineered to express α-amylase inhibitor 1 (αAI-1) from common bean in their seeds. Whereas the genetically modified (GM) seeds are immune to multiple bruchid pest species, the cosmopolitan bruchid Acanthoscelides obtectus is tolerant to αAI-1 and their larvae develop normally inside the seeds. Hymenopteran bruchid parasitoids, the most important natural enemies of bruchids, might thus be exposed to αAI-1 when attacking A.

View Article and Find Full Text PDF
Article Synopsis
  • Genetically modified (GM) plants must undergo risk analysis and regulatory approval globally before market entry, focusing on their impact on non-target arthropods and ecosystem services.
  • Environmental risk assessments assess GM plants case-by-case, considering the specific species, traits, release environments, and intended uses.
  • A publicly available database, developed by the European Food Safety Authority (EFSA), provides bio-ecological information about arthropods in Europe, which can help evaluate potential risks and select species for testing and monitoring in GM maize case studies.
View Article and Find Full Text PDF

Genetically modified (GM) cowpea seeds expressing αAI-1, an α-amylase inhibitor from the common bean, have been shown to be immune against several bruchid species. Effective control of such pests by growing GM cowpea could promote the spread of bruchid species that are αAI-1 tolerant. Consequently, the sustainability of bruchid pest control could be increased by combining GM seeds and hymenopteran parasitoids.

View Article and Find Full Text PDF

Dry grain legume seeds possessing αAI-1, an α-amylase inhibitor from common bean (Phaseolus vulgaris), under the control of a cotyledon-specific promoter have been shown to be highly resistant to several important bruchid pest species. One transgenic chickpea and four cowpea lines expressing αAI-1, their respective controls, as well as nine conventional chickpea cultivars were assessed for their resistance to the bruchids Acanthoscelides obtectus (Say), Callosobruchus chinensis L. and Callosobruchus maculatus F.

View Article and Find Full Text PDF

Early-tier studies are the initial step in the environmental risk assessment of genetically engineered plants on nontarget arthropods. They are conducted in the laboratory where surrogate species are exposed to higher concentrations of the arthropod-active compound than those expected to occur in the field. Thus, early-tier tests provide robust data and allow to make general conclusions about the susceptibility of the surrogate to the test substance.

View Article and Find Full Text PDF

In agricultural ecosystems, arthropod herbivores and fungal pathogens are likely to colonise the same plant and may therefore affect each other directly or indirectly. The fungus that causes powdery mildew (Blumeria graminis tritici) and cereal aphids are important pests of wheat but interactions between them have seldom been investigated. We studied the effects of powdery mildew of wheat on two cereal aphid species, Metopolophium dirhodum and Rhopalosiphum padi.

View Article and Find Full Text PDF

Genetically modified (GM) legumes expressing the α-amylase inhibitor 1 (αAI-1) from Phaseolus vulgaris L. or cysteine protease inhibitors are resistant to several bruchid pests (Coleoptera: Chrysomelidae). In addition, the combination of plant resistance factors together with hymenopteran parasitoids can substantially increase the bruchid control provided by the resistance alone.

View Article and Find Full Text PDF

A concern associated with the growing of genetically modified (GM) crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase.

View Article and Find Full Text PDF

Although genetically modified (GM) plants expressing toxins from Bacillus thuringiensis (Bt) protect agricultural crops against lepidopteran and coleopteran pests, field-evolved resistance to Bt toxins has been reported for populations of several lepidopteran species. Moreover, some important agricultural pests, like phloem-feeding insects, are not susceptible to Bt crops. Complementary pest control strategies are therefore necessary to assure that the benefits provided by those insect-resistant transgenic plants are not compromised and to target those pests that are not susceptible.

View Article and Find Full Text PDF

Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs.

View Article and Find Full Text PDF

Scientific studies are frequently used to support policy decisions related to transgenic crops. Schmidt et al., Arch Environ Contam Toxicol 56:221-228 (2009) recently reported that Cry1Ab and Cry3Bb were toxic to larvae of Adalia bipunctata in direct feeding studies.

View Article and Find Full Text PDF

Cystatins from plants have been implicated in plant defense towards insects, based on their role as inhibitors of heterologous cysteine-proteinases. We have previously characterized thirteen genes encoding cystatins (HvCPI-1 to HvCPI-13) from barley (Hordeum vulgare), but only HvCPI-1 C68 → G, a variant generated by direct-mutagenesis, has been tested against insects. The aim of this study was to analyze the effects of the whole gene family members of barley cystatins against two aphids, Myzus persicae and Acyrthosiphon pisum.

View Article and Find Full Text PDF

We investigated the effects of a Bt maize hybrid on fitness and digestive physiology of the ground-dwelling predator Poecilus cupreus L., as compared with the near-isogenic hybrid. A tritrophic assay revealed that there was a great decline in the detection of Cry1Ab toxin through the trophic chain, the concentration of the toxin being 945, 349 and 37 ng g(-1) of fresh weight in Bt maize leaves, Spodoptera littoralis (Boisduval) larvae and P.

View Article and Find Full Text PDF

The present study investigated prey-mediated effects of two maize varieties expressing a truncated Cry1Ab, Compa CB (event Bt176) and DKC7565 (event MON810), on the biology of the ladybird Stethorus punctillum. Although immuno-assays demonstrated the presence of Cry1Ab in both prey and predator collected from commercial maize-growing fields, neither transgenic variety had any negative effects on survival of the predator, nor on the developmental time through to adulthood. Furthermore, no subsequent effects on ladybird fecundity were observed.

View Article and Find Full Text PDF

The astigmatid mite Tyrophagus neiswanderi Johnston and Bruce is mainly considered a pest of ornamental and horticultural crops. However, this mite has been found infesting Cabrales cheese in Spain, though its population density is low compared to Acarus farris, the prevalent species of astigmatid mite encountered in Cabrales cheese maturing caves. One of the factors that might be influencing this differential abundance is temperature.

View Article and Find Full Text PDF

The developmental rate of immature stages and the reproduction of adults of Tyrophagus putrescentiae (Schrank), T. neiswanderi Johnston and Bruce and Acarus farris (Oudemans) were examined at 70, 80 and 90% r.h.

View Article and Find Full Text PDF

The aim of this study was to assess the effects of potato plants expressing a barley cystatin on a potentially cystatin-susceptible natural enemy by predation on susceptible and non-susceptible preys feeding on the plant. We have focussed on the impact of the variant HvCPI-1 C68 --> G, in which the only cysteine residue was changed by a glycine, on the growth and digestive physiology of the Colorado potato beetle (CPB), Leptinotarsa decemlineata, and the Egyptian cotton leafworm (ECW), Spodoptera littoralis. Moreover, we have studied the prey-mediated effects of the barley cystatin at the third trophic level, using the predatory spined soldier bug (SSB), Podisus maculiventris, as a model.

View Article and Find Full Text PDF