Respiratory diseases, such as pleurisy and pneumonia, cause significant health and economic losses in pig production. This study evaluated 867 finishing pigs from a farm with a history of respiratory issues, using macroscopic lesion scoring (SPES and CVPC), histopathological analysis, qPCR diagnostics, and economic modeling. Severe pleurisy (scores 3 and 4) was observed in 42.
View Article and Find Full Text PDF() is the key pathogen of the porcine respiratory disease complex (PRDC) and contributes to pleurisy in pigs. Due to its limited metabolism and laborious cultivation, molecular tools are useful for diagnosis. This study investigated the genetic diversity of in slaughter pigs with pneumonia and pleurisy, and it assessed co-infections by type A (PM), (APP), and swine influenza virus A (sIVA).
View Article and Find Full Text PDFMycoplasma (M.) hyopneumoniae is a primary etiological agent of porcine enzootic pneumonia (PEP), a disease that causes significant economic losses to pig farming worldwide. Current commercial M.
View Article and Find Full Text PDFis the causative bacterium of porcine enzootic pneumonia and one of the primary etiologic agents of the porcine respiratory disease complex. Most Brazilian commercial pig farms are positive for this pathogen. However, the prevalence of the pathogen in backyard pig farms has not been described, to our knowledge.
View Article and Find Full Text PDFThe intensification of pig farming has posed significant challenges in managing and preventing sanitary problems, particularly diseases of the respiratory complex. Monitoring at slaughter is an important control tool and cannot be overstated. Hence, this study aimed at characterizing both macroscopical and microscopical lesions and identifying the Actinobacillus pleuropneumoniae (APP), Mycoplasma hyopneumoniae (Mhyo), and Pasteurella multocida (PM) associated with pleurisy in swine.
View Article and Find Full Text PDF() is considered the primary causative agent of porcine enzootic pneumonia (EP), a chronic contagious respiratory disease that causes economic losses. Obtaining new pathogenic isolates and studying the genome and virulence factors are necessary. This study performed a complete sequencing analysis of two Brazilian strains, UFV01 and UFV02, aiming to characterize the isolates in terms of the virulence factors and sequence type.
View Article and Find Full Text PDFPorcine Respiratory Diseases Complex (PRDC) is a multifactorial disease that involves several bacterial pathogens, including , , , , and In pigs, the infection may cause lesions such pleurisy, which can lead to carcass condemnation. Hence, 1015 carcasses were selected from three different commercial pig farms, where the respiratory conditions were evaluated using slaughterhouse pleurisy evaluation system (SPES) and classified into five groups. In total, 106 pleural and lung fragments were collected for qPCR testing to identify the five abovementioned pathogens.
View Article and Find Full Text PDFis a difficult-to-control bacterium since commercial vaccines do not prevent colonization and excretion. The present study aimed to evaluate the performance of an orally administered vaccine composed of antigens extracted from and incorporated into mesoporous silica (SBA-15), which has an adjuvant-carrier function, aiming to potentiate the action of the commercial intramuscular vaccine. A total of 60 piglets were divided into four groups (n = 15) submitted to different vaccination protocols as follows, Group 1: oral SBA15 + commercial vaccine at 24 days after weaning, G2: oral vaccine on the third day of life + vaccine commercial vaccine at 24 days, G3: commercial vaccine at 24 days, and G4: commercial vaccine + oral vaccine at 24 days.
View Article and Find Full Text PDFMycoplasma hyopneumoniae, the main etiological agent of Porcine Enzootic Pneumonia, is widely spread in swine production worldwide. Its prevention is of great interest for the productive system, since its colonization in the lung tissue leads to intense production losses. This study aimed to compare the M.
View Article and Find Full Text PDF, the etiological agent of swine enzootic pneumonia, has been reported to increase the susceptibility to secondary infections and modulate the respiratory microbiota in infected pigs. However, no studies have assessed the influence of on the respiratory microbiota diversity under experimental conditions. Therefore, this study evaluated the impact of infection on the respiratory microbiota of experimentally infected swine over time.
View Article and Find Full Text PDFis the primary agent of Swine Enzootic Pneumonia (SEP). Vaccines reduce the clinical manifestation of the disease but do not prevent infection. The present study aimed to evaluate the use of antimicrobial drugs to minimize the impact of .
View Article and Find Full Text PDFMycoplasma (M.) hyopneumoniae is the main pathogen of porcine enzootic pneumonia (PEP). Its controlling is challenging, and requires alternative strategies.
View Article and Find Full Text PDFBackground: So far, three porcine hemoplasmas (PH) have been identified, namely Mycoplasma suis, Mycoplasma parvum, and Mycoplasma haemosuis. The first one is the main agent associated with porcine hemoplasmosis, a possible cause of economic losses in pig production. Thus, this work aimed to detect and quantify PH 16S rRNA in finishing pigs and to associate its load estimate with average daily weight gain (ADWG).
View Article and Find Full Text PDFLeptospirosis is an infectious, contagious disease highly important to the world pig industry, which causes reproductive loss in breeding herds. Endemic infections in a herd may produce little evidence of clinical disease despite resulting in economic losses. However, some epidemiological features of leptospirosis in midwestern Brazil, such as risk factors and prevalence of the disease, remain unclear.
View Article and Find Full Text PDF