As implantable medical electronics (IMEs) developed for healthcare monitoring and biomedical therapy are extensively explored and deployed clinically, the demand for non-invasive implantable biomedical electronics is rapidly surging. Current rigid and bulky implantable microelectronic power sources are prone to immune rejection and incision, or cannot provide enough energy for long-term use, which greatly limits the development of miniaturized implantable medical devices. Herein, a comprehensive review of the historical development of IMEs and the applicable miniaturized power sources along with their advantages and limitations is given.
View Article and Find Full Text PDFAction potentials play a pivotal role in diverse cardiovascular physiological mechanisms. A comprehensive understanding of these intricate mechanisms necessitates a high-fidelity intracellular electrophysiological investigative approach. The amalgamation of micro-/nano-electrode arrays and electroporation confers substantial advantages in terms of high-resolution intracellular recording capabilities.
View Article and Find Full Text PDFIncontrovertibly there is an increasing demand for the development of benign inks suitable for fabrication of high-performing perovskite-based thin film functional layers. Nevertheless, most reported perovskite precursors rely on the use of highly toxic solvents such as acetonitrile, 2-methoxyethanol, dimethylformamide, and many others. Hence, there is a strong imperative for the development of novel and greener inks, which will facilitate smoother commercialization of technologies based on functional perovskite films.
View Article and Find Full Text PDFThe operational stability of organic-inorganic halide perovskite based solar cells is a challenge for widespread commercial adoption. The mobility of ionic species is a key contributor to perovskite instability since ion migration can lead to unfavourable changes in the crystal lattice and ultimately destabilisation of the perovskite phase. Here we study the nanoscale early-stage degradation of mixed-halide mixed-cation perovskite films under operation-like conditions using electrical scanning probe microscopy to investigate the formation of surface nanograin defects.
View Article and Find Full Text PDFHeart diseases are currently the leading cause of death worldwide. The ability to create cardiovascular tissue has numerous applications in understanding tissue development, disease progression, pharmacological testing, bio-actuators, and transplantation; yet current cardiovascular tissue engineering (CTE) methods are limited. However, there have been emerging developments in the bioelectronics field, with the creation of biomimetic devices that can intimately interact with cardiac cells, provide monitoring capabilities, and regulate tissue formation.
View Article and Find Full Text PDFAntisolvent-assisted spin coating has been widely used for fabricating metal halide perovskite films with smooth and compact morphology. However, localized nanoscale inhomogeneities exist in these films owing to rapid crystallization, undermining their overall optoelectronic performance. Here, we show that by relaxing the requirement for film smoothness, outstanding film quality can be obtained simply through a post-annealing grain growth process without passivation agents.
View Article and Find Full Text PDFCurved X-ray detectors have the potential to revolutionize diverse sectors due to benefits such as reduced image distortion and vignetting compared to their planar counterparts. While the use of inorganic semiconductors for curved detectors are restricted by their brittle nature, organic-inorganic hybrid semiconductors which incorporated bismuth oxide nanoparticles in an organic bulk heterojunction consisting of poly(3-hexylthiophene-2,5-diyl) (P3HT) and [6,6]-phenyl C71 butyric acid methyl ester (PC BM) are considered to be more promising in this regard. However, the influence of the P3HT molecular weight on the mechanical stability of curved, thick X-ray detectors remains less well understood.
View Article and Find Full Text PDFControlling the radiative properties of monolayer transition metal dichalcogenides is key to the development of atomically thin optoelectronic devices applicable to a wide range of industries. A common problem for exfoliated materials is the inherent disorder causing spatially varying nonradiative losses and therefore inhomogeneity. Here we demonstrate a five-fold reduction in the spatial inhomogeneity in monolayer WS, resulting in enhanced overall photoluminescence emission and quality of WS flakes, by using an ambient-compatible laser illumination process.
View Article and Find Full Text PDFFerroelectric materials exhibit a phase transition to a paraelectric state driven by temperature - called the Curie transition. In conventional ferroelectrics, the Curie transition is caused by a change in crystal symmetry, while the material itself remains a continuous three-dimensional solid crystal. However, ferroelectric polymers behave differently.
View Article and Find Full Text PDFSmart contact lenses attract extensive interests due to their capability of directly monitoring physiological and ambient information. However, previous demonstrations usually lacked efficient sensor modalities, facile fabrication process, mechanical stability, or biocompatibility. Here, we demonstrate a flexible approach for fabrication of multifunctional smart contact lenses with an ultrathin MoS transistors-based serpentine mesh sensor system.
View Article and Find Full Text PDFNanoscale investigations by scanning probe microscopy have provided major contributions to the rapid development of organic-inorganic halide perovskites (OIHP) as optoelectronic devices. Further improvement of device level properties requires a deeper understanding of the performance-limiting mechanisms such as ion migration, phase segregation, and their effects on charge extraction both at the nano- and macroscale. Here, we have studied the dynamic electrical response of Cs(FAMA)PbIBr perovskite structures by employing conventional and microsecond time-resolved open-loop Kelvin probe force microscopy (KPFM).
View Article and Find Full Text PDFA large amount of research within organic biosensors is dominated by organic electrochemical transistors (OECTs) that use conducting polymers such as poly(3,4-ethylene dioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS). Despite the recent advances in OECT-based biosensors, the sensing is solely reliant on the amperometric detection of the bioanalytes. This is typically accompanied by large undesirable parasitic electrical signals from the electroactive components in the electrolyte.
View Article and Find Full Text PDFSpatial characterisation methods for photodetectors and other optoelectronic devices are necessary for determining local performance, as well as detecting local defects and the non-uniformities of devices. Light beam induced current measurements provide local performance information about devices at their actual operating conditions. Compressed sensing current mapping offers additional specific advantages, such as high speed without the use of complicated experimental layouts or lock-in amplifiers.
View Article and Find Full Text PDFA 10-yr-old male, neutered gray wolf ( Canis lupus ) was presented for atrophy of the temporalis and masseter muscles. Clinical signs and magnetic resonance imaging were consistent with a myopathy. Positive serology for antibody titers directed against Type 2M myofibers, and the observation of a mixed mononuclear inflammatory cell infiltrate along with eosinophils and neutrophils within the temporalis muscle, were diagnostic for masticatory muscle myositis.
View Article and Find Full Text PDFThe data presented in this article is related to the research article entitled "Fabrication of air-stable, large-area, PCDTBT:PCBM polymer solar cell modules using a custom built slot-die coater" (D.I. Kutsarov, E.
View Article and Find Full Text PDFNovel optoelectronic devices rely on complex nanomaterial systems where the nanoscale morphology and local chemical composition are critical to performance. However, the lack of analytical techniques that can directly probe these structure-property relationships at the nanoscale presents a major obstacle to device development. In this work, we present a novel method for non-destructive, simultaneous mapping of the morphology, chemical composition and photoelectrical properties with <20 nm spatial resolution by combining plasmonic optical signal enhancement with electrical-mode scanning probe microscopy.
View Article and Find Full Text PDFSingle-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors.
View Article and Find Full Text PDFCharge transport in organic semiconductors is strongly dependent on the molecular orientation and packing, such that manipulation of this molecular packing is a proven technique for enhancing the charge mobility in organic transistors. However, quantitative measurements of molecular orientation in micrometre-scale structures are experimentally challenging. Several research groups have suggested polarised Raman spectroscopy as a suitable technique for these measurements and have been able to partially characterise molecular orientations using one or two orientation parameters.
View Article and Find Full Text PDFSemiconducting nanowires (NWs) are becoming essential nanobuilding blocks for advanced devices from sensors to energy harvesters, however their full technology penetration requires large scale materials synthesis together with efficient NW assembly methods. We demonstrate a scalable one-step solution process for the direct selection, collection, and ordered assembly of silicon NWs with desired electrical properties from a poly disperse collection of NWs obtained from a supercritical fluid-liquid-solid growth process. Dielectrophoresis (DEP) combined with impedance spectroscopy provides a selection mechanism at high signal frequencies (>500 kHz) to isolate NWs with the highest conductivity and lowest defect density.
View Article and Find Full Text PDFThe photoconversion efficiency of state-of-the-art organic solar cells has experienced a remarkable increase in the last few years, with reported certified efficiency values of up to 8.3%. This increase has been due to an improved understanding of the underlying physics, synthetic discovery and the realization of the pivotal role that morphological optimization plays.
View Article and Find Full Text PDFPower-conversion efficiencies of organic heterojunction solar cells can be increased by using semiconducting donor-acceptor materials with complementary absorption spectra extending to the near-infrared region. Here, we used continuous wave fluorescence and absorption, as well as nanosecond transient absorption spectroscopy to study the initial charge transfer step for blends of a donor poly(p-phenylenevinylene) derivative and low-band gap cyanine dyes serving as electron acceptors. Electron transfer is the dominant relaxation process after photoexcitation of the donor.
View Article and Find Full Text PDFObjective: To determine whether clinically effective concentrations of methylprednisolone or triamcinolone can be achieved in the navicular bursa after injection of methylprednisolone acetate (MPA) or triamcinolone acetonide (TA) into the distal interphalangeal joint (DIPJ) and whether clinically effective concentrations of these drugs can be achieved in the DIPJ after injecting the navicular bursa with the same doses of MPA or TA.
Animals: 32 healthy horses.
Procedures: Horses in groups 1 through 4 received 40 mg of MPA in the DIPJ, 10 mg of TA in the DIPJ, 40 mg of MPA in the navicular bursa, and 10 mg of TA in the navicular bursa, respectively.