Publications by authors named "Fernandez-Valle C"

Tumors develop in an oxidative environment characterized by peroxynitrite production and downstream protein tyrosine (Y) nitration. We showed that tyrosine nitration supports schwannoma cell proliferation and regulates cell metabolism in the inheritable tumor disorder NF2-related Schwannomatosis (NF2-SWN). Here, we identified the chaperone Heat shock protein 90 (Hsp90) as the first nitrated protein that acts as a metabolic switch to promote schwannoma cell proliferation.

View Article and Find Full Text PDF

Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2.

View Article and Find Full Text PDF

Neurofibromatosis Type 2 (NF2)-related schwannomatosis is a genetic disorder that causes development of multiple types of nervous system tumors. The primary and diagnostic tumor type is bilateral vestibular schwannoma. There is no cure or drug therapy for NF2.

View Article and Find Full Text PDF

Background: The vestibular schwannoma (VS) secretome can initiate monocyte recruitment and macrophage polarization to M1 (proinflammatory) and/or M2 (protumorigenic) phenotypes, which in turn secrete additional cytokines that contribute to the tumor microenvironment. Profiling cyst fluid and cerebrospinal fluid (CSF) in cystic VS provides a unique opportunity to understand mechanisms that may contribute to tumor progression and cyst formation.

Hypothesis: Cystic VSs secrete high levels of cytokines into cyst fluid and express abundant M1 and M2 macrophages.

View Article and Find Full Text PDF

Neurofibromatosis Type 2 (NF2) is a tumor predisposition syndrome caused by germline inactivating mutations in the NF2 gene encoding the merlin tumor suppressor. Patients develop multiple benign tumor types in the nervous system including bilateral vestibular schwannomas (VS). Standard treatments include surgery and radiation therapy, which may lead to loss of hearing, impaired facial nerve function, and other complications.

View Article and Find Full Text PDF

Background: Vestibular schwannomas (VS) are benign intracranial tumors caused by loss of function of the merlin tumor suppressor. We tested three hypotheses related to radiation, hearing loss (HL), and VS cell survival: (1) radiation causes HL by injuring auditory hair cells (AHC), (2) fractionation reduces radiation-induced HL, and (3) single fraction and equivalent appropriately dosed multi-fractions are equally effective at controlling VS growth. We investigated the effects of single fraction and hypofractionated radiation on hearing thresholds in rats, cell death pathways in rat cochleae, and viability of human merlin-deficient Schwann cells (MD-SC).

View Article and Find Full Text PDF

Neurofibromatosis Type 2 (NF2) is a rare tumor disorder caused by pathogenic variants of the merlin tumor suppressor encoded by . Patients develop vestibular schwannomas (VS), peripheral schwannomas, meningiomas, and ependymomas. There are no approved drug therapies for NF2.

View Article and Find Full Text PDF

Hypothesis: AR42, a histone deacetylase (HDAC) inhibitor, reduces viability of primary vestibular schwannoma (VS) cells and delays tumor progression and hearing loss (HL) in a xenograft model of VS.

Background: The impact of HDAC expression on AR42 response in primary VS cells is unknown, as well as the effects of AR42 on VS-associated HL and imbalance.

Methods: Primary human VS cells (n = 7) were treated with AR42 (0-3.

View Article and Find Full Text PDF

Schwannomatosis is a rare genetic disorder that predisposes individuals to development of multiple schwannomas mainly in spinal and peripheral nerves and to debilitating chronic pain often unrelated to any schwannoma. Pathogenic variants of two genes, and , are causal in familial cases. However, many schwannomatosis patients lack mutations in these genes.

View Article and Find Full Text PDF

Objective: To describe the RAD51 response (DNA repair) to radiation-induced DNA damage in patient-derived vestibular schwannoma (VS) cells and investigate the utility of RAD51 inhibitor (RI-1) in enhancing radiation toxicity.

Study Design: Basic and translational science.

Setting: Tertiary academic facility.

View Article and Find Full Text PDF

Objective: (1) Characterize the distribution of M1 and M2 macrophages in vestibular schwannomas by hearing status. (2) Develop assays to assess monocyte migration and macrophage polarization in cocultures with vestibular schwannoma cells.

Study Design: Basic and translational science.

View Article and Find Full Text PDF

Vestibular schwannomas (VS) are benign tumors arising from cranial nerve VIII that account for 8-10% of all intracranial tumors and are the most common tumors of the cerebellopontine angle. These tumors are typically managed with observation, radiation therapy, or microsurgical resection. Of the VS that are irradiated, there is a subset of tumors that are radioresistant and continue to grow; the mechanisms behind this phenomenon are not fully understood.

View Article and Find Full Text PDF

Hypothesis: Vestibular Schwannoma (VS) can avoid cell death following radiation injury by entering cell cycle arrest and activating RAD51-related DNA repair.

Background: Although the radiobiology of various cancers is well-studied, the radiobiological effects in VS are poorly understood. In this study, we describe how VS cells enter cell cycle arrest (through p21 expression), activate DNA repair (through RAD51 upregulation), and avoid cell death after radiation-induced double-stranded breaks (DSB) in DNA (as measured by γ-H2AX).

View Article and Find Full Text PDF

The UMi031-A-2 hiPSC line contains a CRISPR-induced homozygous, Neurofibromatosis Type 2 (NF2) mutation (L64P (CTG > CCG)) in the NF2 gene that encodes a merlin tumor suppressor. This line was generated from an unaffected iPSC line using CRISPR technology and characterized for pluripotency and karyotypic stability. The c.

View Article and Find Full Text PDF

Neurofibromatosis Type 2 (NF2) is an autosomal dominant genetic syndrome caused by mutations in the NF2 tumor suppressor gene resulting in multiple schwannomas and meningiomas. There are no FDA approved therapies for these tumors and their relentless progression results in high rates of morbidity and mortality. Through a combination of high throughput screens, preclinical in vivo modeling, and evaluation of the kinome en masse, we identified actionable drug targets and efficacious experimental therapeutics for the treatment of NF2 related schwannomas and meningiomas.

View Article and Find Full Text PDF

Background: Vestibular schwannoma (VS) are intracranial tumors caused by merlin deficiency. Sodium fluorescein (SF) is a fluorescent compound that accumulates in various intracranial tumors, causing tumors to emit green fluorescence after blue light excitation.

Hypothesis: Intravenous SF preferentially deposits in VS, helping surgeons differentiate tumor from surrounding tissue.

View Article and Find Full Text PDF

 Vestibular schwannomas (VS) are intracranial tumors, which are caused by gene mutations that lead to loss of merlin protein. A treatment for VS is stereotactic radiosurgery, a form of radiation. To better understand the radiobiology of VS and radiation toxicity to adjacent structures, our main objectives were (1) investigate effects of single fraction (SF) radiation on viability, cytotoxicity, and apoptosis in normal Schwann cells (SCs) and merlin-deficient Schwann cells (MD-SCs) in vitro, and (2) analyze expression of double strand DNA breaks (γ-H2AX) and DNA repair protein Rad51 following irradiation.

View Article and Find Full Text PDF

Objectives: In this review, we discuss current knowledge about the genetics and epigenetics of vestibular schwannoma (VS) in relation to hearing loss. A multistep and sequential genetic algorithm suitable for the identification of Neurofibromatosis Type 2 (NF2) constitutional and somatic mutations is discussed.

Data Sources, Study Selection: A review was performed of the English literature from 1990 to 2019 using PubMed regarding genetics and epigenetics of vestibular schwannoma and NF2.

View Article and Find Full Text PDF

Background: Schwann cells (SC) may play an important role in perineural invasion (PNI) by promoting cancer cell dispersion. Brain-derived neurotrophic factor (BDNF) may contribute to these cellular events by activating tropomyosine receptor kinase B (TrkB). This study examines the effect of TrkB inhibition on SC migration and oral cancer cell dispersion in vitro.

View Article and Find Full Text PDF

Neurofibromatosis type 2 (NF2) is an autosomal-dominant disorder characterized by the development of bilateral vestibular schwannomas. The gene encodes the tumor suppressor merlin, and loss of merlin activity promotes tumorigenesis and causes NF2. Cellular redox signaling has been implicated in different stages of tumor development.

View Article and Find Full Text PDF

Background: Neurofibromatosis type 2 (NF2) is a genetic tumor-predisposition disorder caused by NF2/merlin tumor suppressor gene inactivation. The hallmark of NF2 is formation of bilateral vestibular schwannomas (VS). Because merlin modulates activity of the Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway, we investigated repurposing drugs targeting MEK1 and/or MEK2 as a treatment for NF2-associated schwannomas.

View Article and Find Full Text PDF

Hypothesis: Merlin-deficient Schwann cells (MD-SC) and primary human vestibular schwannoma (VS) cells exhibit selective uptake of sodium-fluorescein (SF), allowing for fluorescent detection and improved visualization of tumor cells, when compared with Schwann cells (SC).

Background: SF is a fluorescent compound used for fluorescence-guided resection of gliomas. The utility of SF for VS surgery has not been assessed.

View Article and Find Full Text PDF

Neurofibromatosis 2 (NF2) is a rare tumor suppressor syndrome that manifests with multiple schwannomas and meningiomas. There are no effective drug therapies for these benign tumors and conventional therapies have limited efficacy. Various model systems have been created and several drug targets have been implicated in NF2-driven tumorigenesis based on known effects of the absence of merlin, the product of the NF2 gene.

View Article and Find Full Text PDF

Hypothesis: Microsurgical implantation of mouse merlin-deficient Schwann cells (MD-SC) into the cerebellopontine angle of immunodeficient rats will initiate tumor formation, hearing loss, and vestibular dysfunction.

Background: The progress in identifying effective drug therapies for treatment of Neurofibromatosis type II (NF2) is limited by the availability of animal models of VS that develop hearing loss and imbalance.

Methods: A microsurgical technique for implanting MD-SCs onto the cochleovestibular nerve of rats was developed.

View Article and Find Full Text PDF

Schwannomas are benign nerve tumors that occur sporadically in the general population and in those with neurofibromatosis type 2 (NF2), a tumor predisposition genetic disorder. NF2-associated schwannomas and most sporadic schwannomas are caused by inactivating mutations in Schwann cells in the neurofibromatosis type 2 gene (NF2) that encodes the merlin tumor suppressor. Despite their benign nature, schwannomas and especially vestibular schwannomas cause considerable morbidity.

View Article and Find Full Text PDF