Unlocking the potential of topological order in many-body spin systems has been a key goal in quantum materials research. Despite extensive efforts, the quest for a versatile platform enabling site-selective spin manipulation, essential for tuning and probing diverse topological phases, has persisted. Here we utilize on-surface synthesis to construct spin-1/2 alternating-exchange Heisenberg chains by covalently linking Clar's goblets-nanographenes each hosting two antiferromagnetically coupled spins.
View Article and Find Full Text PDFMotivated by recent experimental breakthroughs, we propose a strategy for designing two-dimensional spin-lattices with competing interactions that lead to nontrivial emergent quantum states. We consider = / nanographenes with symmetry as building blocks, and we leverage the potential to control both the sign and the strength of exchange with first neighbors to build a family of spin models. Specifically, we consider the case of a Heisenberg model in a triangle-decorated honeycomb lattice with competing ferromagnetic and antiferromagnetic interactions whose ratio can be varied in a wide range.
View Article and Find Full Text PDFPhenalenyl is a radical nanographene with a triangular shape hosting an unpaired electron with spin = /. The open-shell nature of the phenalenyl is expected to be retained in covalently bonded networks. As a first step, we report synthesis of the phenalenyl dimer by combining in-solution synthesis and on-surface activation and its characterization on Au(111) and on a NaCl decoupling layer by means of inelastic electron tunneling spectroscopy (IETS).
View Article and Find Full Text PDFCoherent control of individual atomic and molecular spins on surfaces has recently been demonstrated by using electron spin resonance (ESR) in a scanning tunneling microscope (STM). Here, a combined experimental and modeling study of the ESR of a single hydrogenated Ti atom that is exchange-coupled to a Fe adatom positioned 0.6-0.
View Article and Find Full Text PDFMagnons and plasmons are different collective modes, involving the spin and charge degrees of freedom, respectively. Formation of hybrid plasmon-magnon polaritons in heterostructures of plasmonic and magnetic systems faces two challenges, the small interaction of the electromagnetic field of the plasmon with the spins, and the energy mismatch, as in most systems plasmons have energies orders of magnitude larger than those of magnons. We show that graphene plasmons form polaritons with the magnons of two-dimensional ferromagnetic insulators, placed up to to half a micrometer apart, with Rabi splittings in the range of 100 GHz (dramatically larger than cavity magnonics).
View Article and Find Full Text PDFA theorem that establishes a one-to-one relation between zero-temperature static spin-spin correlators and coupling constants for a general class of quantum spin Hamiltonians bilinear in the spin operators has been recently established by Quintanilla, using an argument in the spirit of the Hohenberg-Kohn theorem in density functional theory. Quintanilla's theorem gives a firm theoretical foundation to quantum spin Hamiltonian learning using spin structure factors as input data. Here we extend the validity of the theorem in two directions.
View Article and Find Full Text PDFFor the past three decades nanoscience has widely affected many areas in physics, chemistry and engineering, and has led to numerous fundamental discoveries, as well as applications and products. Concurrently, quantum science and technology has developed into a cross-disciplinary research endeavour connecting these same areas and holds burgeoning commercial promise. Although quantum physics dictates the behaviour of nanoscale objects, quantum coherence, which is central to quantum information, communication and sensing, has not played an explicit role in much of nanoscience.
View Article and Find Full Text PDFFractionalization is a phenomenon in which strong interactions in a quantum system drive the emergence of excitations with quantum numbers that are absent in the building blocks. Outstanding examples are excitations with charge e/3 in the fractional quantum Hall effect, solitons in one-dimensional conducting polymers and Majorana states in topological superconductors. Fractionalization is also predicted to manifest itself in low-dimensional quantum magnets, such as one-dimensional antiferromagnetic S = 1 chains.
View Article and Find Full Text PDFNanographenes with zigzag edges are predicted to manifest non-trivial π-magnetism resulting from the interplay of concurrent electronic effects, such as hybridization of localized frontier states and Coulomb repulsion between valence electrons. This provides a chemically tunable platform to explore quantum magnetism at the nanoscale and opens avenues towards organic spintronics. The magnetic stability in nanographenes is thus far greatly limited by the weak magnetic exchange coupling, which remains below the room-temperature thermal energy.
View Article and Find Full Text PDFWhen magnetic atoms are inserted inside a superconductor, the superconducting order is locally depleted as a result of the antagonistic nature of magnetism and superconductivity. Thereby, distinctive spectral features, known as Yu-Shiba-Rusinov states, appear inside the superconducting gap. The search for Yu-Shiba-Rusinov states in different materials is intense, as they can be used as building blocks to promote Majorana modes suitable for topological quantum computing.
View Article and Find Full Text PDFSemiconducting ferromagnet-nonmagnet interfaces in van der Waals heterostructures present a unique opportunity to investigate magnetic proximity interactions dependent upon a multitude of phenomena including valley and layer pseudospins, moiré periodicity, or exceptionally strong Coulomb binding. Here, we report a charge-state dependency of the magnetic proximity effects between MoSe and CrBr in photoluminescence, whereby the valley polarization of the MoSe trion state conforms closely to the local CrBr magnetization, while the neutral exciton state remains insensitive to the ferromagnet. We attribute this to spin-dependent interlayer charge transfer occurring on timescales between the exciton and trion radiative lifetimes.
View Article and Find Full Text PDFThe discovery of ferromagnetic order in monolayer two-dimensional (2D) crystals has opened a new venue in the field of 2D materials. Two-dimensional magnets are not only interesting on their own, but their integration in van der Waals heterostructures allows for the observation of new and exotic effects in the ultrathin limit. The family of chromium trihalides, CrI, CrBr, and CrCl, is so far the most studied among magnetic 2D crystals.
View Article and Find Full Text PDFQuantum confinement of graphene Dirac-like electrons in artificially crafted nanometer structures is a long sought goal that would provide a strategy to selectively tune the electronic properties of graphene, including bandgap opening or quantization of energy levels. However, creating confining structures with nanometer precision in shape, size, and location remains an experimental challenge, both for top-down and bottom-up approaches. Moreover, Klein tunneling, offering an escape route to graphene electrons, limits the efficiency of electrostatic confinement.
View Article and Find Full Text PDFTriangular zigzag nanographenes, such as triangulene and its π-extended homologues, have received widespread attention as organic nanomagnets for molecular spintronics, and may serve as building blocks for high-spin networks with long-range magnetic order, which are of immense fundamental and technological relevance. As a first step towards these lines, we present the on-surface synthesis and a proof-of-principle experimental study of magnetism in covalently bonded triangulene dimers. On-surface reactions of rationally designed precursor molecules on Au(111) lead to the selective formation of triangulene dimers in which the triangulene units are either directly connected through their minority sublattice atoms, or are separated via a 1,4-phenylene spacer.
View Article and Find Full Text PDFA variety of planar π-conjugated hydrocarbons such as heptauthrene, Clar's goblet and, recently synthesized, triangulene have two electrons occupying two degenerate molecular orbitals. The resulting spin of the interacting ground state is often correctly anticipated as = 1, extending the application of Hund's rules to these systems, but this is not correct in some instances. Here we provide a set of rules to correctly predict the existence of zero mode states as well as the spin multiplicity of both the ground state and the low-lying excited states, together with their open- or closed-shell nature.
View Article and Find Full Text PDFShrinking spintronic devices to the nanoscale ultimately requires localized control of individual atomic magnetic moments. At these length scales, the exchange interaction plays important roles, such as in the stabilization of spin-quantization axes, the production of spin frustration, and creation of magnetic ordering. Here, we demonstrate the precise control of the exchange bias experienced by a single atom on a surface, covering an energy range of 4 orders of magnitude.
View Article and Find Full Text PDFWe systematically investigate the relationships between structural and electronic effects of finite size zigzag or armchair carbon nanotubes of various diameters and lengths, starting from a molecular template of varying shape and diameter, i.e. cyclic oligoacene or oligophenacene molecules, and disclosing how adding layers and/or end-caps (i.
View Article and Find Full Text PDFNuclear spins serve as sensitive probes in chemistry and materials science and are promising candidates for quantum information processing. NMR, the resonant control of nuclear spins, is a powerful tool for probing local magnetic environments in condensed matter systems, which range from magnetic ordering in high-temperature superconductors and spin liquids to quantum magnetism in nanomagnets. Increasing the sensitivity of NMR to the single-atom scale is challenging as it requires a strong polarization of nuclear spins, well in excess of the low polarizations obtained at thermal equilibrium, as well as driving and detecting them individually.
View Article and Find Full Text PDFTaking advantage of nuclear spins for electronic structure analysis, magnetic resonance imaging, and quantum devices hinges on knowledge and control of the surrounding atomic-scale environment. We measured and manipulated the hyperfine interaction of individual iron and titanium atoms placed on a magnesium oxide surface by using spin-polarized scanning tunneling microscopy in combination with single-atom electron spin resonance. Using atom manipulation to move single atoms, we found that the hyperfine interaction strongly depended on the binding configuration of the atom.
View Article and Find Full Text PDFWe propose spin valves where a 2D nonmagnetic conductor is intercalated between two ferromagnetic insulating layers. In this setup, the relative orientation of the magnetizations of the insulating layers can have a strong impact on the in-plane conductivity of the 2D conductor. We first show this for a graphene bilayer, described with a tight-binding model, placed between two ferromagnetic insulators.
View Article and Find Full Text PDFMagnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states, including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI as a function of temperature and applied magnetic field.
View Article and Find Full Text PDFSpin resonance of individual spin centers allows applications ranging from quantum information technology to atomic-scale magnetometry. To protect the quantum properties of a spin, control over its local environment, including energy relaxation and decoherence processes, is crucial. However, in most existing architectures, the environment remains fixed by the crystal structure and electrical contacts.
View Article and Find Full Text PDF