Context In vitro embryo production in pigs is an important tool for advancing biomedical research. Intracytoplasmic sperm injection (ICSI) circumvents the polyspermy problems associated with conventional IVF in porcine. However, the suboptimal efficiency for ICSI in pigs requires new strategies to increase blastocyst formation rates.
View Article and Find Full Text PDFGenome editing in pigs for xenotransplantation has seen significant advances in recent years. This study compared three methodologies to generate gene-edited embryos, including co-injection of sperm together with the CRISPR-Cas9 system into oocytes, named ICSI-MGE (mediated gene editing); microinjection of CRISPR-Cas9 components into oocytes followed by in vitro fertilization (IVF), and microinjection of in vivo fertilized zygotes with the CRISPR-Cas9 system. Our goal was to knock-out (KO) porcine genes involved in the biosynthesis of xenoantigens responsible for the hyperacute rejection of interspecific xenografts, namely GGTA1, CMAH, and β4GalNT2.
View Article and Find Full Text PDFBackground: The analysis of clinical magnetoencephalography (MEG) in patients with epilepsy traditionally relies on visual identification of interictal epileptiform discharges (IEDs), which is time consuming and dependent on subjective criteria.
New Method: Here, we explore the ability of Independent Components Analysis (ICA) and Hidden Markov Modeling (HMM) to automatically detect and localize IEDs. We tested our pipelines on resting-state MEG recordings from 10 school-aged children with (multi)focal epilepsy.
Genetic information has been crucial to understand the pathogenesis of T-cell acute lymphoblastic leukemia (T-ALL) at diagnosis and at relapse, but still nowadays has a limited value in a clinical context. Few genetic markers are associated with the outcome of T-ALL patients, independently of measurable residual disease (MRD) status after therapy. In addition, the prognostic relevance of genetic features may be modulated by the specific treatment used.
View Article and Find Full Text PDFPigs are an important resource for meat production and serve as a model for human diseases. Due to their physiological and anatomical similarities to humans, these animals can recapitulate symptoms of human diseases, becoming an effective model for biomedical research. Although, in the past pig have not been widely used partially because of the difficulty in genetic modification; nowadays, with the new revolutionary technology of programmable nucleases, and fundamentally of the CRISPR-Cas9 systems, it is possible for the first time to precisely modify the porcine genome as never before.
View Article and Find Full Text PDFHeterospecific embryo transfer of an endangered species has been carried out using recipients from related domestic females. Aggregation of an embryo from an endangered species with a tetraploid embryo from the species to be transferred could improve the development of pregnancy to term. The main objective of the present study was to analyze embryo aggregation in domestic cat model using hybrid embryos.
View Article and Find Full Text PDFThe need for allogeneic hematopoietic stem cell transplantation (allo-HSCT) in adults with Philadelphia chromosome-negative (Ph-) acute lymphoblastic leukemia (ALL) with high-risk (HR) features and adequate measurable residual disease (MRD) clearance remains unclear. The aim of the ALL-HR-11 trial was to evaluate the outcomes of HR Ph- adult ALL patients following chemotherapy or allo-HSCT administered based on end-induction and consolidation MRD levels. Patients aged 15 to 60 years with HR-ALL in complete response (CR) and MRD levels (centrally assessed by 8-color flow cytometry) <0.
View Article and Find Full Text PDFCRISPR-mediated transcriptional activation, also known as CRISPR-on, has proven efficient for activation of individual or multiple endogenous gene expression in cultured cells from several species. However, the potential of CRISPR-on technology in preimplantation mammalian embryos remains to be explored. Here, we report for the first time the successful modulation of endogenous gene expression in bovine embryos by using the CRISPR-on system.
View Article and Find Full Text PDFNicotinate degradation has hitherto been elucidated only in bacteria. In the ascomycete , six loci, /AN9178 encoding the molybdenum cofactor-containing nicotinate hydroxylase, AN11197 encoding a Cys2/His2 zinc finger regulator HxnR, together with AN11196/, AN11188/, AN11189/ and AN9177/, are clustered and stringently co-induced by a nicotinate derivative and subject to nitrogen metabolite repression mediated by the GATA factor AreA. These genes are strictly co-regulated by HxnR.
View Article and Find Full Text PDFObjective: The purpose of this study was to analyze pain intensity in patients with myofascial pain syndrome (MPS) following a multimodal rehabilitation protocol.
Methods: A prospective study was carried out following the Template for Intervention Description and Replication criteria. Patients were recruited from the rehabilitation unit of a university hospital in Spain between 2009 and 2013.
Transgenic domestic animals represent an alternative to bioreactors for large-scale production of biopharmaceuticals and could also provide more accurate biomedical models than rodents. However, their generation remains inefficient. Recently, DNA transposons allowed improved transgenesis efficiencies in mice and pigs.
View Article and Find Full Text PDFThe recently developed engineered nucleases, such as zinc-finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) 9, provide new opportunities for gene editing in a straightforward manner. However, few reports are available regarding CRISPR application and efficiency in cattle. Here, the CRISPR/Cas9 system was used with the aim of inducing knockout and knock-in alleles of the bovine PRNP gene, responsible for mad cow disease, both in bovine fetal fibroblasts and in IVF embryos.
View Article and Find Full Text PDFIn this study, we analyzed the effects of the cloned embryo aggregation on in vitro embryo development and embryo quality by measuring blastocyst diameter and cell number, DNA fragmentation levels and the expression of genes associated with pluripotency, apoptosis, trophoblast and DNA methylation in the porcine. Zona-free reconstructed cloned embryos were cultured in the well of the well system, placing one (1x non aggregated group) or three (3x group) embryos per microwell. Our results showed that aggregation of three embryos increased blastocyst formation rate and blastocyst diameter of cloned pig embryos.
View Article and Find Full Text PDFEmbryo disaggregation allows the production of two to four identical offspring from a single cow embryo. In addition, embryo complementation has become the technique of choice to demonstrate the totipotency of embryonic stem cells and induced pluripotent stem cells. Therefore, the aim of this study was to generate a new and simple method by aggregation in the well-of-the-well system to direct each single enhanced green fluorescent protein (egfp) eight-cell blastomere derived from bovine in vitro fertilization embryos to the inner cell mass (ICM) of chimeras produced with fused and asynchronic embryos.
View Article and Find Full Text PDFAlthough transgenic methods in mammals are inefficient, an easy and highly efficient transgenesis system using I-SceI meganuclease (intron-encoded endonuclease from S. cerevisiae) was recently described in Xenopus. The method consisted of injection into fertilized eggs of an I-SceI reaction mixture with a plasmid DNA carrying the transgene, flanked by the meganuclease recognition sites (pIS).
View Article and Find Full Text PDFThe objective was to evaluate the effects of cell cycle inhibitors (6-dimethylaminopurine [DMAP], and dehydroleukodine [DhL]) on transgene expression efficiency and on mosaic expression patterns of IVF bovine zygotes cytoplasmically injected with oolema vesicles coincubated with transgene. The DNA damage induced by the transgene or cell cycle inhibitors was measured by detection of phosphorylated histone H2AX foci presence (marker of DNA double-stranded breaks). Cloning of egfp blastomeres was included to determine continuity of expression after additional rounds of cellular division.
View Article and Find Full Text PDFWe report an extraordinary case of collision tumor consisting of a lung adenocarcinoma and a metastatic adenoid cystic carcinoma in a 56 year-old man. He was diagnosed with a pulmonary nodule 11 years after treatment of an adenoid cystic carcinoma of the right maxillary sinus. A non-small cell carcinoma was observed when a transbronchial biopsy was performed.
View Article and Find Full Text PDFParthenogenetic embryos are an ethically acceptable alternative for the derivation of human embryonic stem cells. In this work, we propose a new strategy to produce bovine parthenogenetic embryos inhibiting the emission of the first polar body during in vitro maturation, and allowing the extrusion of the second polar body during oocyte activation. Cytochalasin B, an inhibitor of actin microfilaments, was employed during in vitro maturation to inhibit first polar body emission or during parthenogenetic activation to block second polar body emission.
View Article and Find Full Text PDFThe import of exogenous DNA (eDNA) from the cytoplasm to the nucleus represents a key intracellular obstacle for efficient gene delivery in mammalian cells. In this study, cumulus cells or oolemma vesicles previously incubated with eDNA, and naked eDNA were injected into the cytoplasm of MII oocytes to evaluate their efficiency for eDNA expressing bovine embryo production. Our study evaluated the potential of short time co-incubation (5 min) of eDNA with; (1) cumulus cells, to be used as donor cells for SCNT and (2) oolemma vesicles (vesicles) to produce parthenogenic transgene expressing embryos.
View Article and Find Full Text PDFBackground: BMP4 is a member of the transforming growth factor beta (TGFbeta) superfamily and Noggin is a potent BMP inhibitor that exerts its function by binding to BMPs preventing interactions with its receptors. The aim of this work was to investigate the role of BMP4 and Noggin, on oocytes in vitro maturation (m experiments) and embryos in vitro development (c experiments) of bovine.
Methods: For m experiments, COCs were collected from slaughterhouse ovaries and in vitro matured in TCM with 100 ng/ml of either BMP4 or Noggin.
Transgenesis constitutes an important tool for pharmacological protein production and livestock improvement. We evaluated the potential of laparoscopic insemination (LI), in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) to produce egfp-expressing ovine embryos, using spermatozoa previously exposed to pCX-EGFP plasmid in two different sperm/DNA incubation treatments: "Long Incubation" (2 h at 17 C) and "Short Incubation" (5 min at 5 C). For LI, Merino sheep were superovulated and inseminated with treated fresh semen from Merino rams.
View Article and Find Full Text PDFIn this work, Dehydroleucodine (DhL) was evaluated as a chemical activator of bovine oocytes and somatic cell nuclear transfer (SCNT) reconstituted embryos. Oocytes were activated with 5 microM Ionomycin (Io) and exposed for 3 h to 1 or 5 microM DhL alone (Io-Dhl1 or Io-DhL5) or combined with Cytochalasin B (Io-DhL1/CB; Io-DhL5/CB). Control groups were Io (Io), Io followed by 1.
View Article and Find Full Text PDF