Publications by authors named "Fernandes K R"

Voltage-gated potassium channels play a crucial role in cellular repolarization and are potential therapeutic targets in neuroinflammatory disorders and neurodegenerative diseases. This study explores Tityus bahiensis scorpion venom for neuroactive peptides. We identified the αKtx12 peptide as a potent neuroprotective agent.

View Article and Find Full Text PDF
Article Synopsis
  • The Lucena 1 cell line, derived from K562 leukemia cells, shows multidrug resistance (MDR) due to selective vincristine pressure, which the study aims to understand.
  • A proteomic analysis revealed differences between K562 and Lucena 1, particularly highlighting the role of the ATP-dependent efflux pump ABCB1 and unique tubulin isoforms in drug resistance.
  • Findings also indicated key molecular players like Rap1A, Krit1, STAT1, and carbonic anhydrase I, pointing to complex regulation in Lucena 1 that could inform new cancer treatments beyond the traditional P-glycoprotein inhibition strategies.
View Article and Find Full Text PDF

A highly porous structure, and an inorganic (biosilica) and collagen-like organic content (spongin) makes marine sponges potential candidates to be used as natural scaffolds in bone tissue engineering. The aim of this study was to characterize (through SEM, FTIR, EDS, XRD, pH, mass degradation and porosity tests) scaffolds produced from two species of marine sponges, (DR) and (AV), and to evaluate the osteogenic potential of these scaffolds by using a bone defect model in rats. First, it was shown that the same chemical composition and porosity (84 ± 5% for DR and 90 ± 2% for AV) occurs among scaffolds from the two species.

View Article and Find Full Text PDF

This study aimed to develop bone regenerative therapeutic strategies, based on the addition of bone marrow stromal cells (BMSC) on bioglass/collagen (BG/COL) scaffolds. For this purpose, an in vivo study was conducted using tissue response of the BG/COL scaffolds combined with BMSC in a critical-size defects. Wistar rats were submitted to the surgical procedure to perform the cranial critical size bone defects and distributed in four groups (20 animals per group): Control Group (CG) (rats submitted to the cranial bone defect surgery without treatment), Bioglass Group (BG) (rats treated with BG), BG/COL Group (rats treated with BG/COL) and Bioglass/Collagen and BMSC Group (BG/COL/BMSC) (rats treated with BG/COL scaffolds enriched with BMSCs).

View Article and Find Full Text PDF

Biomaterials and bone grafts, with the ability of stimulating tissue growth and bone consolidation, have been emerging as very promising strategies to treat bone fractures. Despite its well-known positive effects of biosilicate (BS) on osteogenesis, its use as bone grafts in critical situations such as bone defects of high dimensions or in non-consolidated fractures may not be sufficient to stimulate tissue repair. Consequently, several approaches have been explored to improve the bioactivity of BS.

View Article and Find Full Text PDF

One of the most promising strategies to improve the biological performance of bone grafts is the combination of different biomaterials. In this context, the aim of this study was to evaluate the effects of the incorporation of marine spongin (SPG) into Hydroxyapatite (HA) for bone tissue engineering proposals. The hypothesis of the current study is that SPG into HA would improve the biocompatibility of material and would have a positive stimulus into bone formation.

View Article and Find Full Text PDF

Introduction: Collagen from marine esponges has been used as a promising material for tissue engineering proposals. Similarly, photobiomodulation (PBM) is able of modulating inflammatory processes after an injury, accelerating soft and hard tissue healing and stimulating neoangiogenesis. However, the effects of the associated treatments on bone tissue healing have not been studied yet.

View Article and Find Full Text PDF

Background: Photobiomodulation presents stimulatory effects on tissue metabolism, constituting a promising strategy to produce bone tissue healing.

Objective: the aim of the present study was to investigate the in vivo performance of PBM using an experimental model of cranial bone defect in rats.

Material And Methods: rats were distributed in 2 different groups (control group and PBM group).

View Article and Find Full Text PDF

Bioactive glasses (BG) are known for their ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not enough to induce bone consolidation. Thus, the enrichment of BG with polymers such as Poly (D, L-lactic-co-glycolic) acid (PLGA) and associated to photobiomodulation (PBM) may be a promising strategy to promote bone tissue healing.

View Article and Find Full Text PDF

Background And Aims: Bioglass (BG) and Magnesium (Mg) composites have been used for bone tissue engineering proposes due to its osteogenic activity and increased mechanical properties respectively. The introduction of Collagen (Col) is a common and efficient approach for bone tissue engineering applications toward cell proliferation. Recently, studies demonstrated that BG/Col/Mg composites presented proper mechanical properties and were non-cytotoxic.

View Article and Find Full Text PDF

The combination of different biomaterials can be a promising intervention for the composites manufacture, mainly by adding functional and structural characteristics of each material and guarantee the advantages of the use of these composites. In this context, the aim of this study was to develop and evaluated the influence of the incorporation of marine spongin (SPG) into Biosilicate® (BS) in different proportions be used during bone repair. For this purpose, it was to develop and investigate different BS/SPG formulations for physico-chemical and morphological characteristics by pH, loss mass, Fourier transform infrared spectrometer (FTIR) and scanning electron microscope (SEM) analysis.

View Article and Find Full Text PDF

Bioactive glasses (BG) are known for their unique ability to bond to bone tissue. However, in critical situations, even the osteogenic properties of BG may be not sufficient to produce bone consolidation. The use of composite materials may constitute an optimized therapeutical intervention for bone stimulation.

View Article and Find Full Text PDF

Biomaterial-based bone grafts have an important role in the field of bone tissue engineering. One of the most promising classes of biomaterials is collagen, including the ones from marine biodiversity (in general, called spongin (SPG)). Also, hydroxyapatite (HA) has an important role in stimulating bone metabolism.

View Article and Find Full Text PDF

The aim of this study was to compare the effects of photobiomodulation (PBM) associated with an aerobic and an aquatic exercise training on the degenerative process related to osteoarthritis (OA) in the articular cartilage in rats. Fifty male Wistar rats were randomly divided into 5 groups: OA control group (CG), OA plus aerobic training group (AET), OA plus aquatic training group (AQT), OA plus aerobic training associated with PBM group (AETL), OA plus aquatic training associated with PBM group (AQTL). The aerobic training (treadmill; 16 m/min; 50 min/day) and the aquatic training (water jumping; 50-80% of their body mass) started 4 weeks after the surgery and they were performed 3 days/week for 8 weeks.

View Article and Find Full Text PDF

The aim of this study was to investigate if grape or apple juices are able to protect bone tissue of rats exposed to cadmium. For this purpose, histopathological analysis and immunohistochemistry for RUNX-2 and RANK-L were investigated in this setting. A total of 20 adult Wistar rats were distributed into four groups (n = 5), as follows: control group, cadmium group, cadmium and grape juice group, and Cadmium and apple juice group.

View Article and Find Full Text PDF

This study evaluated physical-chemical characteristics of a vacuumed collagen-impregnated bioglass (BG) scaffolds and bone marrow stromal cells (BMSCs) behavior on those composites. scanning electron microscope and energy dispersive x-ray spectroscope demonstrated collagen (Col) was successfully introduced into BG. Vacuum impregnation system has showed efficiency for Col impregnation in BG scaffolds (approximately 20 wt %).

View Article and Find Full Text PDF

The purpose of this study was to evaluate the effects of surface properties of bone implants coated with hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) on platelets and macrophages upon implant installation and compare them to grit-blasted Ti and Thermanox used as a control. Surface properties were characterized using scanning electron microscopy, profilometry, crystallography, Fourier transform infrared spectroscopy, and coating stability. For platelets, platelet adherence and morphology were assessed.

View Article and Find Full Text PDF

The main purpose of the present work was to evaluate if low laser level therapy (LLLT) can improve the effects of Biosilicate®/PLGA (BS/PLGA) composites on cell viability and bone consolidation using a tibial defects of rats. The composites were characterized by scanning electron microscope (SEM) and reflection Fourier transform infrared spectrometer (FTIR). For the in vitro study, fibroblast and osteoblast cells were seeded in the extract of the composites irradiated or not with LLLT (Ga-Al-As, 808nm, 10J/cm) to assess cell viability after 24, 48 and 72h.

View Article and Find Full Text PDF

A widespread epidemic of Zika virus (ZIKV) infection was reported in 2015 in South and Central America, with neurological symptons including meningoencephalitis and Guillain-Barré syndrome in adults, besides an apparent increased incidence of microcephaly in infants born to infected mothers. It is becoming a necessity to have a trustworthy animal model to better understand ZIKV infection. In this study we used newborn white Swiss mice as a model to investigate the ZIKV strain recently isolated in Brazil.

View Article and Find Full Text PDF

Objective: The present study aimed to evaluate the in vivo response of a resistance training and low-level laser therapy (LLLT) on tibias and femurs of rats with diabetes mellitus (DM).

Materials And Methods: Forty male Wistar rats were randomly distributed into four experimental groups: control group (CG), diabetic group (DG), diabetic trained group (TG) and diabetic trained and laser irradiated group (TLG). DM was induced by streptozotocin (STZ) and after two weeks laser and resistance training started, performed for 24 sessions, during eight weeks.

View Article and Find Full Text PDF

The aim of this study was to assess the characteristics of the CaP/Col composites, in powder and fiber form, via scanning electron microscopy (SEM), pH and calcium release evaluation after immersion in SBF and to evaluate the performance of these materials on the bone repair process in a tibial bone defect model. For this, four different formulations (CaP powder - CaPp, CaP powder with collagen - CaPp/Col, CaP fibers - CaPf and CaP fibers with collagen - CaPf/Col) were developed. SEM images indicated that both material forms were successfully coated with collagen and that CaPp and CaPf presented HCA precursor crystals on their surface.

View Article and Find Full Text PDF

Bone loss occurs rapidly and consistently after the occurrence of a spinal cord injury (SCI), leading to a decrease in bone mineral density (BMD) and a higher risk of fractures. In this context, the stimulatory effects of low level laser therapy (LLLT) also known as photobiomodulation (PBM) have been highlighted, mainly due to its osteogenic potential. The aim of the present study was to evaluate the effects of LLLT on bone healing using an experimental model of tibial bone defect in SCI rats.

View Article and Find Full Text PDF

The aims of this study were to characterize different BS/PLGA composites for their physicochemical and morphological characteristics and evaluate the in vitro and in vivo biological performance. The physicochemical and morphological modifications were analyzed by pH, mass loss, XRD, setting time, and SEM. For in vitro analysis, the osteoblast and fibroblast viability was evaluated.

View Article and Find Full Text PDF

Objective: The aim of this study was to evaluate the in vivo response of 2 different laser wavelengths (red and infrared) on skeletal muscle repair process in diabetic rats.

Design: Forty Wistar rats were randomly divided into 4 experimental groups: basal control-nondiabetic and muscle-injured animals without treatment (BC); diabetic muscle-injured without treatment (DC); diabetic muscle-injured, treated with red laser (DCR) and infrared laser (DCIR). The injured region was irradiated daily for 7 consecutive days, starting immediately after the injury using a red (660 nm) and an infrared (808 nm) laser.

View Article and Find Full Text PDF