Publications by authors named "Fernande Grandjean"

In nature, nonheme iron enzymes use dioxygen to generate high-spin iron(IV)=O species for a variety of oxygenation reactions. Although synthetic chemists have long sought to mimic this reactivity, the enzyme-like activation of O to form high-spin iron(IV) = O species remains an unrealized goal. Here, we report a metal-organic framework featuring iron(II) sites with a local structure similar to that in α-ketoglutarate-dependent dioxygenases.

View Article and Find Full Text PDF

The size-dependent and shape-dependent characteristics that distinguish nanoscale materials from bulk solids arise from constraining the dimensionality of an inorganic structure. As a consequence, many studies have focused on rationally shaping these materials to influence and enhance their optical, electronic, magnetic and catalytic properties. Although a select number of stable clusters can typically be synthesized within the nanoscale regime for a specific composition, isolating clusters of a predetermined size and shape remains a challenge, especially for those derived from two-dimensional materials.

View Article and Find Full Text PDF

The Mössbauer spectra of trigonal α-FePO, measured between 4.2 and 300 K, exhibit hyperfine parameters characteristic of high-spin iron(III) in a pseudotetrahedral oxygen environment. Between 24.

View Article and Find Full Text PDF

Iron is one of the most abundant elements in the environment and in the human body. As an essential nutrient, iron homeostasis is tightly regulated, and iron dysregulation is implicated in numerous pathologies, including neuro-degenerative diseases, atherosclerosis, and diabetes. Endogenous iron pool concentrations are directly linked to iron ion uptake from environmental sources such as drinking water, providing motivation for developing new technologies for assessing iron(ii) and iron(iii) levels in water.

View Article and Find Full Text PDF

Metal-organic frameworks are of interest for use in a variety of electrochemical and electronic applications, although a detailed understanding of their charge transport behavior, which is of critical importance for enhancing electronic conductivities, remains limited. Herein, we report isolation of the mixed-valence framework materials, Fe(tri)(BF) (tri = 1,2,3-triazolate; x = 0.09, 0.

View Article and Find Full Text PDF

Conductive metal-organic frameworks are an emerging class of three-dimensional architectures with degrees of modularity, synthetic flexibility and structural predictability that are unprecedented in other porous materials. However, engendering long-range charge delocalization and establishing synthetic strategies that are broadly applicable to the diverse range of structures encountered for this class of materials remain challenging. Here, we report the synthesis of K Fe(BDP) (0 ≤ x ≤ 2; BDP = 1,4-benzenedipyrazolate), which exhibits full charge delocalization within the parent framework and charge mobilities comparable to technologically relevant polymers and ceramics.

View Article and Find Full Text PDF

KFe(CN) reacts with the viologen 1,1'-bis(2,4-dinitrophenyl)-4,4'-bipyridinium dication, (DNP), to form a supramolecular complex, (DNP)[Fe(CN)]·10HO (1). The crystal structure of 1 reveals that there are two [Fe(CN)] anions within an organic framework of three (DNP) cations with the shortest Fe(III)···Fe(III) distances of ca. 9.

View Article and Find Full Text PDF

This review deals with our long-range goal of determining why the Prussian blue pigments, typically either the "soluble" KFe[Fe(CN)]·xHO or the alternative "insoluble" Fe[Fe(CN)]·xHO compounds, used by artists from shortly after the discovery of Prussian blue in 1704 and well into the early twentieth century, often fade when exposed to light. In order to achieve this goal it was decided that first, for comparison purposes, we had to prepare and fully characterize Prussian blues prepared by various, often commercially successful, synthetic methods. The characterization has employed a large variety of modern methods to determine both the stoichiometry of the Prussian blues and the arrangement of the voids found in the latter "insoluble" Prussian blues.

View Article and Find Full Text PDF

The proportionality constant, α, between the observed isomer shifts and the calculated electron probability density at the iron nucleus has been reevaluated in terms of the correct experimental isomer shifts relative to α-iron and their corresponding accuracy, which should be considered in the linear regression fit yielding α. The iron-57 excited state nuclear quadrupole moment, Q, is not a "relative" value and its widely accepted experimental value is 0.16(1) × 10 m as also confirmed by nuclear model calculations.

View Article and Find Full Text PDF

A new metal-organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri =1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene)), is found to be highly selective in the adsorption of CO over a variety of other gas molecules, making it extremely effective, for example, in the removal of trace CO from mixtures with H2, N2, and CH4. This framework not only displays significant CO adsorption capacity at very low pressures (1.45 mmol/g at just 100 μbar), but, importantly, also exhibits readily reversible CO binding.

View Article and Find Full Text PDF

Several high-resolution Mössbauer spectra of yttrium iron garnet, Y3Fe5O12, have been fit as a function of temperature with a new model based on a detailed analysis of the spectral changes that result from a reduction from the cubic Ia3̅d space group to the trigonal R3̅ space group. These spectral fits indicate that the magnetic sextet arising from the 16a site in cubic symmetry is subdivided into three sextets arising from the 6f, the 3d, 3d, and the 1a, 1b, 2c sites in rhombohedral-axis trigonal symmetry. The 24d site in cubic Ia3̅d symmetry is subdivided into four sextets arising from four different 6f sites in R3̅ rhombohedral-axis trigonal symmetry, sites that differ only by the angles between the principal axis of the electric field gradient tensor and the magnetic hyperfine field assumed to be parallel with the magnetic easy axis.

View Article and Find Full Text PDF

The ability of a benzoquinonoid bridging ligand to mediate double-exchange coupling in a mixed-valence Fe2 complex is demonstrated. Metalation of the bridging ligand 2,5-di(2,6-dimethylanilino)-3,6-dibromo-1,4-benzoquinone (LH2) with Fe(II) in the presence of the capping ligand tris((6-methyl-2-pyridyl)methyl)amine (Me3TPyA) affords the dinuclear complex [(Me3TPyA)2Fe(II)2(L)](2+). The dc magnetic measurements, in conjunction with X-ray diffraction and Mössbauer spectroscopy, reveal the presence of weak ferromagnetic superexchange coupling between Fe(II) centers through the diamagnetic bridging ligand to give an S = 4 ground state.

View Article and Find Full Text PDF

The characterization of the unstable Ni(II) bis(silylamide) Ni{N(SiMe3 )2 }2 (1), its THF complex Ni{N(SiMe3 )2 }2 (THF) (2), and the stable bis(pyridine) derivative trans-Ni{N(SiMe3 )2 }2 (py)2 (3), is described. Both 1 and 2 decompose at ca. 25 °C to a tetrameric Ni(I) species, [Ni{N(SiMe3 )2 }]4 (4), also obtainable from LiN(SiMe3 )2 and NiCl2 (DME).

View Article and Find Full Text PDF

The bis(μ-oxo) dimeric complexes {Ar(iPr8)OM(μ-O)}2 (Ar(iPr8) = C6H-2,6-(C6H2-2,4,6-(i)Pr3)2-3,5-(i)Pr2; M = Fe (1), Co (2)) were prepared by oxidation of the M(I) half-sandwich complexes {Ar(iPr8)M(η(6)-arene)} (arene = benzene or toluene). Iron species 1 was prepared by reacting {Ar(iPr8)Fe(η(6)-benzene)} with N2O or O2, and cobalt species 2 was prepared by reacting {Ar(iPr8)Co(η(6)-toluene)} with O2. Both 1 and 2 were characterized by X-ray crystallography, UV-vis spectroscopy, magnetic measurements, and, in the case of 1, Mössbauer spectroscopy.

View Article and Find Full Text PDF

The iron-57 Mössbauer spectra of the eight-coordinate complex, [Fe(L(N4))2](BF4)2, where L(N4) is the tetradentate N(1)(E),N(2)(E)-bis[(1-methyl-1H-imidazol-2-yl)methylene]-1,2-benzenediimine ligand, have been measured between 4.2 and 295 K and fit with a quadrupole doublet. The fit at 4.

View Article and Find Full Text PDF

The 2 to 300 K magnetic susceptibilities of Fe{N(SiMe2Ph)2}2, 1, Fe{N(SiMePh2)2}2, 2, and the diaryl complex Fe(Ar(Pr(i)4))2, 3, where Ar(Pr(i)4) is C6H3-2,6(C6H3-2,6-Pr(i)2)2 have been measured. Initial fits of these properties in the absence of an independent knowledge of their ligand field splitting have proven problematic. Ab initio calculations of the CASSCF/RASSI/SINGLE-ANISO type have indicated that the orbital energies of the complexes, as well as those of Fe(Ar(Me6))2, 4, where Ar(Me6) is C6H3-2,6(C6H2-2,4,6-Me3)2), are in the order d(xy)≈ d(x(2)-y(2)) < d(xz) ≈ d(yz) < d(z(2)), and the iron(II) complexes in this ligand field have the (d(xy), d(x(2)-y(2)))(3)(d(xz), d(yz))(2)(d(z(2)))(1) ground electronic configuration with a substantial orbital contribution to their effective magnetic moments.

View Article and Find Full Text PDF

The 3,5-dichlorobenzoate anion, L(-), serves as a bridging ligand and 2,2'-bipyridine, bipy, as a terminal bidentate ligand to yield, through hydrothermal syntheses, the tetranuclear clusters Dy2Co2L10(bipy)2, 1, and Ln2Ni2L10(bipy)2, where Ln is the trivalent La, 2, Gd, 3, Tb, 4, Dy, 5, or Ho, 6, ion. Single-crystal X-ray diffraction reveals that the six complexes are all isomorphous with the monoclinic P2₁/c space group and with lattice parameters that decrease with the lanthanide contraction. The two cobalt(II) or nickel(II) and two Ln(III) cations are linked by the 10 L(-) anions to generate Dy2Co2 or Ln2Ni2 3d-4f cationic heteronuclear clusters with a slightly bent Co···Dy···Dy···Co or Ni···Ln···Ln···Ni arrangement.

View Article and Find Full Text PDF

Three potassium crown ether salts, [K(Et2O)2(18-crown-6)][Fe{N(SiMe3)Dipp}2] (1a; Dipp = C6H3-2,6-Pr(i)2), [K(18-crown-6)][Fe{N(SiMe3)Dipp}2]·0.5PhMe (1b), and [K(18-crown-6)][M{N(SiMe3)Dipp}2] (M = Co, 2; M = Ni, 3), of the two-coordinate linear or near-linear bis-amido monoanions [M{N(SiMe3)Dipp}2](-) (M = Fe, Co, Ni) were synthesized by one-electron reduction of the neutral precursors M{N(SiMe3)Dipp}2 with KC8 in the presence of 18-crown-6. They were characterized by X-ray crystallography, UV-vis spectroscopy, cyclic voltammetry, and magnetic measurements.

View Article and Find Full Text PDF

Treatment of the cobalt(II) amide, [Co{N(SiMe3)2}2]2, with four equivalents of the sterically crowded terphenyl phenols, HOAr(Me6) (Ar(Me6) = C6H3-2,6(C6H2-2,4,6-Me3)2) or HOAr(iPr4) (Ar(iPr4) = C6H3-2,6(C6H3-2,6-Pr(i)2)2), produced the first well-characterized, monomeric two-coordinate cobalt(II) bisaryloxides, Co(OAr(Me6))2 (1) and Co(OAr(iPr4))2 (2a and 2b), as red solids in good yields with elimination of HN(SiMe3)2. The compounds were characterized by electronic spectroscopy, X-ray crystallography, and direct current magnetization measurements. The O-Co-O interligand angles in 2a and 2b are 180°, whereas the O-Co-O angle in 1 is bent at 130.

View Article and Find Full Text PDF

The titanium bisamido complex Ti{N(H)Ar(iPr6)}2 (Ar(iPr6) = C6H3-2,6-(C6H2-2,4,6-(i)Pr3)2 (2), along with its three-coordinate titanium(III) precursor, TiCl{N(H)Ar(iPr6)}2 (1), have been synthesized and characterized. Compound 1 was obtained via the stoichiometric reaction of LiN(H)Ar(iPr6) with the Ti(III) complex TiCl3·2NMe3 in trimethylamine. Reduction of 1 with 1 equiv of KC8 afforded Ti{N(H)Ar(iPr6)}2 (2) in moderate yield.

View Article and Find Full Text PDF

A series of high spin, two-coordinate first row transition metal-amido complexes, M{N(SiMe3)Dipp}2 {M = Fe (1), Co (2), or Ni (3); Dipp = C6H3-2,6-Pr(i)2} and a tetranuclear C-H activated chromium amide, [Cr{N(SiMe2CH2)Dipp}2Cr]2(THF) (4), were synthesized by reaction of their respective metal dihalides with 2 equiv of the lithium amide salt. They were characterized by X-ray crystallography, electronic and infrared spectroscopy, SQUID magnetic measurements, and computational methods. Contrary to steric considerations, the structures of 1-3 display planar eclipsed M{NSiC(ipso)}2 arrays and short M-N distances.

View Article and Find Full Text PDF

The iron-57 Mössbauer spectra of the linear, two-coordinate complexes, [K(crypt-222)][Fe(C(SiMe3)3)2], 1, and Fe(C(SiMe3)3)2, 2, were measured between 5 and 295 K under zero applied direct current (dc) field. These spectra were analyzed with a relaxation profile that models the relaxation of the hyperfine field associated with the inversion of the iron cation spin. Because of the lifetime of the measurement (10(-8) to 10(-9) s), iron-57 Mössbauer spectroscopy yielded the magnetization dynamics of 1 and 2 on a significantly faster time scale than was previously possible with alternating current (ac) magnetometry.

View Article and Find Full Text PDF

The synthesis, magnetic, and spectroscopic characteristics of the synthetically useful dimeric cobalt(II) silylamide complex [Co{N(SiMe3)2}2]2 (1) and several of its Lewis base complexes have been investigated. Variable-temperature nuclear magnetic resonance (NMR) spectroscopy of 1 showed that it exists in a monomer-dimer equilibrium in benzene solution and has an association energy (ΔGreacn) of -0.30(20) kcal mol(-1) at 300 K.

View Article and Find Full Text PDF

The reaction of N-methydiethanolamine (mdeaH2), benzoic acid, FeCl3, and Ln(NO3)3·6H2O or LnCl3·xH2O yields a series of decanuclear coordination clusters, [Ln3Fe7(μ4-O)2(μ3-OH)2(mdea)7(μ-benzoate)4(N3)6]·4MeCN·H2O, where Ln = Gd(III) (1) or Tb(III) (2), and [Er3Fe7(μ4-O)2(μ3-OH)2(mdea)7(μ-benzoate)4(N3)5(MeOH)]Cl·7.5H2O·11.5MeOH (3).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjqd1fdqqtep38qgu6a0bfhrr1v0rtcfh): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once