Brazil is the largest global producer of sugarcane and plays a significant role-supplier of sugar and bioethanol. However, diseases such as brown and orange rust cause substantial yield reductions and economic losses, due decrease photosynthesis and biomass in susceptible cultivars. Molecular markers associated with resistance genes, such as Bru1 (brown rust) and G1 (orange rust), could aid in predicting resistant genotypes.
View Article and Find Full Text PDFMultiple genes in sugarcane control sucrose accumulation and the biosynthesis of cell wall components; however, it is unclear how these genes are expressed in its apical culms. To better understand this process, we sequenced mRNA from +1 stem internodes collected from four genotypes with different concentrations of soluble solids. Culms were collected at four different time points, ranging from six to 12-month-old plants.
View Article and Find Full Text PDFBMC Genomics
September 2020
Background: The development of biomass crops aims to meet industrial yield demands, in order to optimize profitability and sustainability. Achieving these goals in an energy crop like sugarcane relies on breeding for sucrose accumulation, fiber content and stalk number. To expand the understanding of the biological pathways related to these traits, we evaluated gene expression of two groups of genotypes contrasting in biomass composition.
View Article and Find Full Text PDFSugarcane (Saccharum spp.) has a complex genome with variable ploidy and frequent aneuploidy, which hampers the understanding of phenotype and genotype relations. Despite this complexity, genome-wide association studies (GWAS) may be used to identify favorable alleles for target traits in core collections and then assist breeders in better managing crosses and selecting superior genotypes in breeding populations.
View Article and Find Full Text PDFBackground: Sugarcane (Saccharum spp.) is predominantly an autopolyploid plant with a variable ploidy level, frequent aneuploidy and a large genome that hampers investigation of its organization. Genetic architecture studies are important for identifying genomic regions associated with traits of interest.
View Article and Find Full Text PDF