Publications by authors named "Fernanda S Poletto"

Lipid-core polymeric nanocapsules are innovative devices that present distinguished characteristics due to the presence of sorbitan monostearate into the oily-core. This component acted as low-molecular-mass organic gelator for the oil (medium chain triglycerides). The organogel-structured core influenced the polymeric wall characteristics disfavoring the formation of more stable polymer crystallites.

View Article and Find Full Text PDF

Lipid-core nanocapsules (LNC) are vesicular nanocarriers prepared by solvent displacement. LNC have been previously prepared using medium-chain triglyceride and sorbitan monostearate as liquid and solid lipophilic components dispersed in the core, surrounded by poly(epsilon-caprolactone) (PCL). Our objective was to investigate the antioxidant activity of LNC containing quercetin (QUE), a radical scavenger, prepared with octyl methoxycinnamate and sorbitan monostearate as lipophilic core components and PCL as the polymer wall.

View Article and Find Full Text PDF

The nanoencapsulation of capsaicinoids (capsaicin and dihydrocapsaicin) was proposed in this work as a strategy to control their release due to the reservoir characteristics of the nanocapsules. This reservoir property could prolong the topical analgesic effect and reduce the burning sensation and skin irritation caused by the capsaicinoids. The nanocapsules were physicochemically characterized and presented z-average diameter of 153 +/- 7 (PDI < 0.

View Article and Find Full Text PDF

Based on the structure of polymeric nanocapsules containing a lipid-dispersed core composed of caprylic/capric trygliceride (CCT) and sorbitan monostearate (SM), we hypothesized that varying the core component concentrations the drug release kinetic could be modulated. Our objective was also to determine the parameters which were responsible for controlling the drug release kinetics. The nanocapsules were prepared by interfacial deposition of poly(epsilon-caprolactone).

View Article and Find Full Text PDF

The objective of this work was to verify if hydrophilic gels containing benzophenone-3 loaded nanocapsules (HG-NCBZ3) could improve the sunscreen in vitro effectiveness against UVA radiation and its photostability compared to a conventional hydrogel containing the free sunscreen (HG-BZ3). In parallel, the immune response of the nanostructured system was evaluated by mouse ear swelling test and the local lymph node assay. The nanocapsules were prepared by interfacial deposition of poly(epsilon-caprolactone) and characterized in terms of particle size, polydispersity index, zeta potential, drug content and encapsulation efficiency.

View Article and Find Full Text PDF

We hypothesized that the control of the poly(epsilon-caprolactone) (PCL) nanosphere sizes could be achieved by controlling the size of the primary emulsion droplets considering a combined effect of the ethanol volume fraction in the organic phase and the stirring rate of the primary emulsion. In this way, we prepared poly(epsilon-caprolactone) (PCL) nanospheres in order to evaluate the effect of those variables on the hydrodynamic diameters of the nanoparticles by a 32 factorial design. The size distribution curves considering intensity, volume and number of particles showed monomodal distributions for all formulations.

View Article and Find Full Text PDF

In this work, we aimed to evaluate the influence of the proportions of poly(epsilon-caprolactone) (PCL) in the poly(hydroxybutyrate-co-hydroxyvalerate) (PHBHV) blended microparticles on the drug release profiles of drug models and to determine the drug release mechanism. Diclofenac and indomethacin used as drug models showed encapsulation efficiencies close to 85%. The average diameters (122-273microm) and the specific surface areas (26-120m(2)g(-1)) of the microparticles were dependent on the PCL concentration in the blends.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: